✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本方案针对桥网养护中追求复合柱成本最低的需求,引入遗传算法进行优化求解。通过构建包含桥网结构特性、养护需求、成本参数等因素的桥梁养护方案模型,结合遗传算法的选择、交叉、变异等操作,对各桥梁的养护方案进行优化设计。旨在找到满足桥网养护要求且复合柱成本最低的养护方案组合,为桥网养护决策提供科学依据,降低养护成本,提高桥网运营效益。
关键词
遗传算法;桥网养护;复合柱成本;养护方案设计;优化求解
一、引言
1.1 研究背景
桥梁网络作为交通基础设施的重要组成部分,其养护工作直接关系到交通运输的安全与效率。随着桥梁使用年限的增长,桥梁结构的老化、损坏等问题逐渐凸显,养护需求日益增加。而在桥网养护过程中,复合柱作为桥梁结构的关键支撑部件,其养护方案的选择对养护成本有着重要影响。传统的养护方案设计往往缺乏系统性和优化性,导致养护成本过高。因此,寻求一种科学有效的方法来优化桥网养护方案,降低复合柱成本,成为当前桥网养护领域亟待解决的问题。
1.2 研究意义
将遗传算法应用于桥网养护方案设计,以复合柱成本最低为目标进行优化求解,具有重要的现实意义。一方面,能够帮助桥梁管理部门制定更加合理、经济的养护计划,降低养护成本,提高资金使用效率;另一方面,通过优化养护方案,可有效延长桥梁使用寿命,保障桥网的安全稳定运行,为交通运输提供可靠保障,促进区域经济的发展。
二、桥网养护问题分析
2.1 问题描述
桥网养护方案设计问题可归结为在满足桥网整体结构安全、使用寿命等约束条件下,针对桥网中的每一座桥梁,确定其复合柱的养护方式(如修复、更换、加固等)、养护时间和养护资源投入等,使得整个桥网养护过程中复合柱的总成本最低。由于桥网中桥梁数量众多,各桥梁的结构特点、损伤程度、使用年限等因素各不相同,且不同养护方案组合下的成本和效果存在差异,因此该问题是一个复杂的多变量、多约束的优化问题。
2.2 约束条件
- 结构安全约束:养护后的桥梁结构必须满足国家相关规范和标准,确保桥梁在设计荷载和使用年限内的结构安全性。例如,桥梁的承载能力、稳定性等指标需达到规定要求。
- 使用寿命约束:养护方案应保证桥梁在一定的使用年限内能够正常运行,避免因养护不当导致桥梁过早损坏。
- 资源约束:养护过程中可投入的人力、物力和财力资源有限,需在资源限制范围内制定养护方案。例如,养护人员数量、设备数量以及养护资金预算等。
- 时间约束:部分桥梁的养护工作可能受到交通流量、季节变化等因素的影响,需要在规定的时间窗口内完成养护任务。
三、基于遗传算法的桥网养护方案优化模型构建
3.1 编码方式
采用整数编码与二进制编码相结合的混合编码方式。对于每一座桥梁,将其复合柱的养护方式进行整数编码,例如 1 表示修复,2 表示更换,3 表示加固等;养护时间采用二进制编码,将养护时间划分为若干个时间区间,每个时间区间对应一个二进制位,通过二进制数表示桥梁在哪些时间区间内进行养护;养护资源投入也采用二进制编码,将资源种类(如人力、设备、资金等)分别编码,二进制位表示是否投入相应资源以及投入的程度 。以包含 3 座桥梁的桥网为例,编码可能为 [1, 01, 10; 2, 10, 01; 3, 11, 11],分别对应三座桥梁的养护方式、养护时间和养护资源投入编码。
3.2 适应度函数设计
【1】初始环境配置:清空当前工作区和命令行;计时器开始。
【2】已知常量参数设置:
(1)项目信息参数输入:
1、项目全局信息;
2、工期相关信息;
3、建安费相关信息;
4、企业管理费成本相关信息;
5、贷款利息成本相关信息;
6、市场信息参数;
7、构件产品信息参数;
(2)遗传算法参数设置:
1、染色体数目
2、基因数量
3、迭代终止的代数
4、交叉变异概率
5、灾变相关参数
(3)约束条件参数设置
1、决策变量取值范围
2、工期上限
【5】算法启动前期准备:此部分主要提前准备算法运算过程中所需要的一些矩阵或变量;
【6】初始化种群:
(1)均匀等分初始化群体
(2)二进制编码
(3)适应度求值
(4)打印初始种群结果
【7】遗传操作迭代主要程序:(迭代循环主要步骤)
(1)提前保留上一代的种群和适应度;
(2)自适应交叉操作;
(3)自适应变异操作;
(4)适应度及其平均值计算;
(5)群体重组操作;
(6)灾变判断;
(7)灾变操作;
(8)精英保留策略;
(9)打印当代最优适应度和最差适应度消息;
【8】优化结果展示:此部分主要包括:优化结果打印、优化过程轨迹展示等;
【9】程序结束:计时器停止;
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇