【路径规划】基于粒子群算法PSO危险化学品运输路线规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言在现代化工产业蓬勃发展的当下,危险化学品作为其中的关键角色,其应用领域极为广泛,从工业生产的各个环节,到人们日常生活的诸多方面,都有着不可或缺的作用。然而,危险化学品所具有的易燃易爆、有毒有害以及强腐蚀性等特性,也决定了其在运输过程中存在着较高的风险。一旦运输过程中发生事故,如泄漏、爆炸等,不仅会对人员的生命安全造成严重威胁,还会对周边的生态环境带来巨大的破坏,同时也会给社会经济带来沉重的损失。

近年来,我国危险化学品运输量呈现出持续增长的态势。相关数据显示,2015 - 2021 年我国危化品运输量由 13.55 亿吨增长至 18.5 亿吨,预计 2023 年我国危化品运输量已突破 20 亿吨 ,2015 - 2021 年我国危化品物流行业市场规模由 1.18 万亿元增长至 2.24 万亿元,预计 2023 年我国危化品物流行业市场规模已达到 2.6 万亿元。在运输方式上,公路运输凭借其灵活性高、所需投资相对较少等优势,占据了危化品物流绝大多数市场,2021 年公路运输占整体危化品物流市场的比重达 70%。但与此同时,危化品运输事故也频繁发生。仅在 2024 年 8 月,据不完全统计,就发生了侧翻、泄漏、着火等各类危化品运输大小事故 24 起。例如 8 月 27 日湖南岳阳,一辆运载乙酸乙烯酯的危化品运输车在途经许广高速岳阳服务区时突然出现泄漏;8 月 23 日陕西沪陕高速西安往南阳方向 1350 段,一辆载有 32.5 吨甲醇的半挂罐车起火。这些事故的发生,无疑给我们敲响了警钟,凸显了加强危化品运输安全管理的紧迫性和重要性。

而在危化品运输安全管理中,路径规划是至关重要的一环。合理的路径规划能够有效避开交通拥堵路段,减少运输时间,降低车辆在道路上的停留时长,从而降低事故发生的概率。同时,通过避开人口密集区、生态环境敏感区等,能够在最大程度上减少一旦发生事故时对人员和环境的潜在危害。传统的路径规划方法,如 Dijkstra 算法,虽然在静态路网中能够找到最短路径,但无法有效应对现实中动态变化的路况信息,如交通拥堵、道路临时封闭等情况;A * 算法虽能处理一些动态因素,但其效率较低,在面对复杂路况时,难以快速准确地规划出最优路径;遗传算法可以处理复杂的优化问题,但其收敛速度较慢,难以满足实时性需求,在危化品运输这种对时间和安全要求极高的场景下,存在一定的局限性。

粒子群算法(Particle Swarm Optimization, PSO)作为一种基于群体智能的优化算法,近年来在诸多领域得到了广泛的应用。它通过模拟鸟群觅食行为,让群体中的个体之间相互学习和协作,从而快速找到最优解。该算法具有良好的全局搜索能力和较快的收敛速度,能够在复杂的解空间中迅速寻优。将粒子群算法应用于危险化学品运输路径规划中,能够充分利用其优势,结合实时路况信息、道路条件、人口分布等多方面因素,动态调整路径规划,有效提高运输效率,降低运输风险,为危化品运输的安全与高效提供有力的技术支持 。因此,对基于粒子群算法的危险化学品运输路线规划的研究具有重要的现实意义和应用价值。

二、危险化学品运输与路径规划概述

(一)危险化学品运输特点与风险

危险化学品运输具有独特的特点,其运输量大、涉及面广,涵盖了化工、能源、医药等众多行业,随着经济的发展,各行业对危化品的需求不断增长,使得危化品运输量持续攀升。同时,其危险性高,涉及的物质具有易燃易爆、有毒有害、强腐蚀性等特性,一旦发生事故,后果不堪设想。例如,2020 年 6 月 13 日,沈海高速浙江台州温岭出口处,一辆液化石油气槽罐车发生爆炸,造成 20 人死亡、175 人受伤,槽罐车爆炸冲出高速公路,导致周边部分民房及厂房倒塌 ,这起事故凸显了危化品运输的高危险性。此外,危化品运输专业性强,从车辆的选择、设备的配备,到从业人员的资质和操作规范,都有严格的要求,运输过程中需要采取特殊的防护和应急措施,以确保运输安全。

在运输过程中,危险化学品面临着诸多风险。交通事故是常见的风险之一,由于驾驶员操作失误、车辆故障、恶劣天气等原因,容易引发碰撞、侧翻等事故,进而导致危化品泄漏、燃烧甚至爆炸。如 2023 年 8 月 11 日,河北承德市两辆油罐车(各装载 33 吨石脑油)追尾后起火,造成 2 人死亡 。泄漏、污染风险也不容忽视,包装破损、装卸不当等都可能导致危化品泄漏,对土壤、水源等造成污染,破坏生态环境。火灾、爆炸风险更是危化品运输的重大威胁,易燃易爆的危化品在遇到火源、高温、撞击等情况时,极易引发火灾和爆炸,造成巨大的人员伤亡和财产损失。中毒窒息风险同样存在,有毒有害的危化品泄漏后,会释放出有毒气体,若周围人员防护不当,吸入这些气体,可能会导致中毒窒息。还有一些其他不可预测风险,如地震、洪水等自然灾害,也可能对危化品运输造成影响,引发事故。

(二)路径规划的重要性

合理的路径规划在危险化学品运输中具有举足轻重的地位。从降低事故概率方面来看,通过避开交通拥堵路段,可以减少车辆的行驶时间和停车次数,降低车辆之间发生碰撞的可能性,从而降低事故发生的概率。选择路况良好、道路条件优越的路线,能够减少车辆因颠簸、路况不佳等原因导致的故障,进一步保障运输安全。避开人口密集区,能减少事故发生时对人员的伤害,降低事故的严重程度。在减少损失方面,避开生态环境敏感区,如水源地、自然保护区等,能有效预防事故对生态环境造成破坏,减少因环境污染而带来的巨额治理成本和生态修复费用。

保障人民生命财产安全是路径规划的核心目标之一。危化品运输一旦发生事故,可能会对周边居民的生命安全造成直接威胁,合理规划路径,降低事故风险,能够为人民群众的生命财产安全提供有力保障。同时,促进社会经济发展也是路径规划的重要意义所在。危化品作为工业生产的重要原料,其安全、高效运输是保障供应链畅通的关键。通过合理的路径规划,提高运输效率,确保危化品按时、按量送达目的地,有助于维持企业的正常生产运营,促进社会经济的稳定发展。若因路径规划不合理导致运输延误或发生事故,可能会影响相关企业的生产,甚至引发连锁反应,对整个社会经济造成负面影响。

三、粒子群算法(PSO)解析

(一)PSO 算法原理

粒子群算法(PSO)的诞生源于对鸟群觅食行为的巧妙模拟。想象在一片广阔的区域中,一群鸟儿分散开来寻找食物。每只鸟都可以被看作是一个粒子,它们在空间中具有自己的位置和飞行速度。在寻找食物的过程中,鸟儿们会不断地调整自己的飞行方向和速度 。

粒子在搜索空间中飞行,其位置代表了问题的一个潜在解。每个粒子都有一个适应度值,这个值根据具体的优化问题而定,就像鸟儿根据距离食物的远近判断自己当前位置的好坏。粒子在飞行过程中,会记住自己曾经到达过的最优位置(pbest),这就好比鸟儿记得自己飞过的离食物最近的地方,这体现了粒子的个体认知。同时,整个粒子群也会记录下所有粒子到目前为止找到的最优位置(gbest),这相当于鸟群中离食物最近的那只鸟的位置,代表了群体的经验。

粒子根据自身的历史最优位置(pbest)和群体的历史最优位置(gbest)来更新自己的速度和位置。在更新速度时,粒子会综合考虑自己之前的飞行速度、向自身最优位置靠近的趋势以及向群体最优位置靠近的趋势,从而决定下一步的飞行方向和速度大小。通过不断地迭代更新,粒子们逐渐向最优解靠近,就像鸟儿们最终找到食物的位置一样,从而实现对最优解的搜索。

(二)算法流程与关键公式

  1. 初始化:首先,需要确定粒子群的规模,即粒子的数量。每个粒子在搜索空间中随机初始化位置和速度。位置的初始化决定了粒子初始时在解空间中的分布情况,而速度的初始化则设定了粒子初始的移动方向和速度大小。同时,将每个粒子的历史最优位置(pbest)初始化为其当前位置,此时粒子还没有找到比初始位置更优的解。将全局最优位置(gbest)初始化为所有粒子中适应度值最优的粒子位置,即从一开始就确定了当前粒子群中表现最好的粒子位置作为全局最优的初始估计。
  1. 计算适应度:根据具体的优化问题,为每个粒子计算适应度值。在危险化学品运输路径规划中,适应度函数可能综合考虑路径长度、运输时间、安全风险等因素。例如,路径长度越短、运输时间越少、安全风险越低,适应度值就越高。通过计算适应度值,能够衡量每个粒子所代表的路径方案的优劣程度,为后续的粒子更新提供依据。
  1. 速度和位置更新:这是粒子群算法的核心步骤,通过以下公式进行更新:

4. 迭代更新:不断重复计算适应度和更新速度、位置的步骤,直到满足预设的终止条件。终止条件可以是达到最大迭代次数,即经过一定次数的迭代后,认为算法已经充分搜索了解空间,此时输出当前的最优解;也可以是适应度值收敛,即当连续多次迭代中,最优适应度值的变化小于某个阈值时,认为算法已经找到较为稳定的最优解,停止迭代 。

(三)PSO 算法优势

  1. 全局搜索能力强:粒子群算法通过多个粒子在解空间中的并行搜索,并且粒子之间能够共享信息,使得算法能够从多个不同的初始点出发,探索解空间的各个区域。粒子不仅会根据自身的经验(pbest)进行搜索,还会参考群体的最优经验(gbest),这种双重引导机制使得粒子能够在更广阔的空间中寻找最优解,从而有效避免陷入局部最优解。在复杂的危险化学品运输路径规划问题中,可能存在多个局部最优路径,但 PSO 算法能够凭借其强大的全局搜索能力,找到全局最优或近似全局最优的路径方案 。
  1. 鲁棒性好:PSO 算法对初始条件的依赖性相对较弱,即使初始粒子群的分布不太理想,通过多次迭代,粒子也能够逐渐向最优解靠拢。在面对不同的运输场景和输入数据时,PSO 算法都能保持较好的性能,不会因为初始条件的微小变化而产生较大的波动。例如,在不同的地理区域、交通状况下进行危险化学品运输路径规划时,PSO 算法都能有效地给出合理的路径规划方案,表现出较强的适应性和稳定性 。
  1. 适用于高维空间:随着问题维度的增加,传统的优化算法往往会面临计算复杂度急剧增加、搜索效率降低等问题。而粒子群算法由于其独特的搜索机制,在处理高维问题时仍然具有较好的性能。在危险化学品运输路径规划中,需要考虑的因素众多,如路径长度、交通状况、人口密度、环境敏感区等,这些因素构成了一个高维的解空间,PSO 算法能够在这样的高维空间中快速搜索,找到满足多方面要求的最优路径 。
  1. 易于并行化:粒子群算法中每个粒子的更新过程相对独立,粒子之间主要通过共享全局最优信息进行协作。这使得算法非常适合并行计算,利用现代多核处理器或分布式计算资源,可以显著提高算法的运行效率。在实际应用中,当需要处理大规模的危险化学品运输路径规划任务时,可以将粒子群分配到多个计算节点上同时进行计算,大大缩短计算时间,满足实时性要求 。

四、基于 PSO 的危险化学品运输路线规划建模

(一)问题抽象与转化

将危险化学品运输路线规划问题巧妙地转化为粒子群算法(PSO)能够有效解决的优化问题,是实现高效路径规划的关键步骤。在这个转化过程中,明确目标和约束条件是首要任务。

从目标角度来看,运输成本的最小化是一个重要目标,这涉及到燃油消耗、车辆损耗、人工成本等多个方面。路径长度直接影响燃油消耗,较短的路径可以减少燃油的使用量,从而降低运输成本。车辆在行驶过程中,随着行驶里程的增加,车辆的零部件会逐渐磨损,需要更频繁的维修和保养,因此较短的路径也能降低车辆损耗成本 。而人工成本与运输时间相关,较短的运输时间意味着司机工作时间的减少,相应的人工成本也会降低。

运输时间的最短化同样至关重要。在现代物流中,时间就是效益,快速的运输能够提高供应链的效率,满足客户对货物及时送达的需求。危化品运输的时效性直接关系到相关企业的生产进度,如果运输时间过长,可能会导致企业生产停滞,造成巨大的经济损失。同时,运输时间的缩短也能降低车辆在道路上的停留时间,减少潜在的风险。

风险的最低化更是危化品运输路径规划的核心目标。危化品的特殊性质决定了一旦发生事故,后果不堪设想。因此,在规划路径时,要充分考虑各种风险因素。人口密集区是风险高发区域,一旦在这些区域发生危化品运输事故,可能会造成大量人员伤亡;交通拥堵路段会增加车辆的停留时间和事故发生的概率,如车辆在拥堵路段频繁启停,容易导致车辆故障,进而引发事故;环境敏感区,如水源地、自然保护区等,一旦受到危化品污染,会对生态环境造成长期的、难以修复的破坏 。

约束条件也是不容忽视的重要方面。车辆载重限制是必须遵守的硬约束,每辆危化品运输车辆都有其规定的最大载重,如果超载运输,不仅会影响车辆的行驶安全,还可能导致车辆零部件损坏,增加事故发生的风险。道路通行限制也多种多样,不同地区、不同道路可能对危化品运输车辆的通行有不同的规定,有些道路可能禁止危化品车辆通行,有些道路对车辆的通行时间有限制,还有些道路对车辆的行驶速度有严格要求,这些都需要在路径规划中予以考虑 。交通规则约束更是保障运输安全的基础,如车辆必须按照规定的车道行驶,遵守交通信号灯,保持安全车距等。

通过明确这些目标和约束条件,将危险化学品运输路线规划问题转化为一个多目标优化问题,使得粒子群算法能够在这个框架下进行高效的搜索和优化,从而找到满足多方面要求的最优运输路线 。

(二)环境与路径表示

  1. 环境建模:
  • 栅格地图:将运输环境划分为一系列大小相等的栅格,就像把一幅地图分割成一个个小方格。每个栅格可以表示为可行走区域、障碍物区域、人口密集区、环境敏感区等不同状态。例如,用数值 0 表示可行走区域,1 表示障碍物区域,2 表示人口密集区,3 表示环境敏感区等。通过这种方式,将复杂的地理环境转化为计算机易于处理的离散数据形式,方便后续的路径搜索和评估 。
  • Voronoi 图:基于环境中的障碍物和敏感区域,构建 Voronoi 图。在 Voronoi 图中,图中的边到相邻障碍物或敏感区域的距离是相等的,这意味着沿着这些边规划路径,可以保证与障碍物和敏感区域保持一定的安全距离。比如在一个存在多个工厂(视为障碍物)和居民区(视为敏感区域)的区域,Voronoi 图的边会避开这些区域,从而为危化品运输提供相对安全的路径骨架 。
  • 自由空间区域分解:把运输环境分解为一系列相互连接的自由空间区域,这些区域内没有障碍物和敏感区域的限制,车辆可以自由行驶。每个自由空间区域可以用多边形来表示,通过确定多边形的顶点坐标来定义区域的范围。然后,在这些自由空间区域之间建立连接关系,形成一个连通图,为路径规划提供基础 。
  1. 路径表示:
  • 坐标点序列:将路径表示为一系列坐标点的集合,每个坐标点对应路径上的一个位置。这些坐标点可以是地理坐标(如经纬度),也可以是在栅格地图中的网格坐标。例如,路径可以表示为 [(x1,y1),(x2,y2),...,(xn,yn)],其中 (xi,yi) 表示第 i 个坐标点的位置。粒子在粒子群算法中的位置向量就可以用这些坐标点的坐标值来表示,通过不断更新粒子的位置向量,寻找最优的路径坐标点序列 。
  • 角度序列:把路径表示为一系列角度的集合,每个角度表示路径的转弯角度。假设车辆从一个位置行驶到下一个位置,通过计算两个位置之间的方向变化,得到转弯角度。例如,路径可以表示为 [θ1,θ2,...θn],其中 θi 表示第 i 段路径的转弯角度。粒子的位置向量则可以用这些角度的大小来表示,通过调整粒子位置向量中的角度值,优化路径的转弯情况,使路径更加平滑 。
  • 路径段序列:将路径表示为一系列路径段的集合,每个路径段连接两个关键点,这些关键点可以是路口、区域边界点等。每个路径段可以用起点和终点的坐标来描述,例如路径段可以表示为 [(x1,y1),(x2,y2)],表示从坐标 (x1,y1) 到坐标 (x2,y2) 的一段路径。整个路径就是由多个这样的路径段依次连接而成,粒子的位置向量用这些关键点的位置来表示,通过改变粒子位置向量中关键点的位置,搜索最优的路径段组合 。

(三)适应度函数设计

适应度函数在粒子群算法中起着评估路径优劣的关键作用。在危险化学品运输路线规划中,适应度函数需要综合考虑多个重要因素,并通过加权求和的方式来得到最终的适应度值。

路径长度是一个基础因素,它直接关系到运输成本和时间。较短的路径可以减少燃油消耗和运输时间,从而降低运输成本,提高运输效率。在适应度函数中,路径长度的权重 w1 可以根据实际情况进行调整,如果对运输成本较为关注,可以适当提高 w1 的值 。

安全距离也是至关重要的因素。危化品运输必须与人口密集区、环境敏感区等保持足够的安全距离,以降低事故发生时对人员和环境的危害。计算路径与这些敏感区域的最小距离,作为安全距离指标。安全距离越大,说明路径越安全,在适应度函数中的贡献越大。权重 w2 用于平衡安全距离与其他因素的重要性,如果对安全要求较高,可以增大 w2 的值 。

路径的平滑度同样不可忽视。平滑的路径可以减少车辆的转弯次数和转弯角度,降低车辆的磨损和能耗,同时也能提高行驶的安全性和舒适性。可以通过计算路径中相邻路径段之间的夹角变化来衡量平滑度,夹角变化越小,路径越平滑。权重 w3 用于体现平滑度在适应度函数中的相对重要性 。

对于动态环境,时间成本也是一个关键考量因素。交通拥堵、道路施工等动态因素会影响运输时间,因此需要考虑路径在不同时间段的通行时间。结合实时交通信息,预测每条路径的运输时间,作为时间成本指标。权重 w4 用于调整时间成本在适应度函数中的比重,如果对时效性要求较高,可以加大 w4 的值 。

最终的适应度函数可以表示为:Fitness = w1 * PathLength + w2 * SafetyDistance + w3 * Smoothness + w4 * TimeCost。通过合理调整权重 w1、w2、w3、w4 的值,可以根据实际需求平衡各个因素的重要性,使得粒子群算法能够搜索到符合特定要求的最优运输路径 。

五、PSO 算法参数设置与优化

(一)关键参数对算法的影响

  1. 种群规模:种群规模的大小对粒子群算法(PSO)的性能有着显著的影响。当种群规模较小时,算法的计算量相对较小,运行速度较快。然而,由于粒子数量有限,算法在搜索解空间时的覆盖范围较窄,可能无法充分探索到所有潜在的最优解,从而容易陷入局部最优。例如,在一个复杂的函数优化问题中,如果种群规模仅设置为 5,粒子可能只能探索到解空间中的一小部分区域,难以找到全局最优解。相反,当种群规模较大时,粒子能够更全面地覆盖解空间,增加了找到全局最优解的机会。但与此同时,计算量也会大幅增加,算法的运行时间会显著延长。在大规模的路径规划问题中,若种群规模设置为 500,虽然能更全面地搜索路径,但计算时间可能会从几分钟延长到数小时,甚至更长 。
  1. 惯性权重:惯性权重在 PSO 算法中起着平衡全局搜索和局部搜索的关键作用。较大的惯性权重使得粒子更倾向于保持之前的速度,具有较强的全局搜索能力,能够在更广阔的解空间中探索,寻找可能的最优解区域。在一个搜索空间较大且复杂的优化问题中,初始阶段设置较大的惯性权重,如 0.9,粒子可以快速地在整个解空间中移动,初步确定可能存在最优解的区域 。而较小的惯性权重则使粒子更注重当前的局部区域,更倾向于在当前位置附近进行精细搜索,有利于挖掘局部最优解。当算法接近收敛时,将惯性权重减小到 0.4 左右,粒子可以在之前确定的可能最优解区域内进行更细致的搜索,提高解的精度 。
  1. 学习因子:学习因子分为个体学习因子

    c1

    和社会学习因子

    c2

    。个体学习因子

    c1

    主要影响粒子向自身历史最优位置(pbest)靠拢的程度。当

    c1

    较大时,粒子更依赖自身的经验,更倾向于在自己曾经到达过的最优位置附近进行搜索,这有助于挖掘个体粒子的局部信息,对于一些局部特征明显的问题,能够快速找到局部最优解。在一个具有多个局部最优解的函数优化问题中,如果

    c1

    设置为 2.5,粒子会更关注自身的历史最优位置,在其附近进行深入搜索 。社会学习因子

    c2

    主要影响粒子向全局历史最优位置(gbest)靠拢的程度。当

    c2

    较大时,粒子更依赖群体的经验,更倾向于向全局最优位置靠近,这有助于粒子之间的信息共享和协作,加快算法的收敛速度,对于一些需要全局协调的问题,能够更快地找到全局最优解。在一个需要综合考虑多个因素的路径规划问题中,如果

    c2

    设置为 2.5,粒子会更积极地向全局最优路径靠近,促进整个粒子群更快地收敛到全局最优解 。
  1. 最大速度:最大速度限制了粒子在每次迭代中位置更新的最大步长。较大的最大速度使粒子能够在解空间中快速移动,有利于全局搜索,能够迅速探索到不同的区域。在一个广阔的搜索空间中,较大的最大速度可以让粒子快速跨越不同的区域,寻找可能的最优解。但如果最大速度过大,粒子可能会跳过最优解区域,无法进行精细搜索,导致无法收敛到最优解。在一个具有多个局部最优解的问题中,如果最大速度设置过大,粒子可能会快速穿越这些局部最优解区域,而无法在这些区域内进行深入搜索 。较小的最大速度则使粒子在局部区域内进行更细致的搜索,有利于局部搜索,能够提高解的精度。但如果最大速度过小,粒子的移动范围受限,搜索效率会降低,可能需要更多的迭代次数才能找到最优解。在一个局部最优解较为集中的问题中,如果最大速度设置过小,粒子可能会在局部区域内缓慢移动,花费大量时间进行搜索 。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值