【电力系统】基于NSGA-Ⅲ优化算法的梯级水电和火电机组的联合多目标调度研究附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在当今能源需求日益增长的背景下,电力系统的稳定、经济和高效运行显得尤为重要。电力调度作为电力系统运行的核心环节,旨在根据负荷预测、机组特性和网络约束,合理安排发电机组的出力,以满足系统负荷需求并实现特定目标。随着可再生能源渗透率的提高以及市场化改革的深入,电力系统运行的复杂性显著增加。梯级水电和火电机组的联合多目标调度,作为一种典型的混合能源系统调度问题,其优化求解对于提升系统运行效率、降低运行成本、促进能源结构转型具有深远的意义。本文旨在深入探讨基于NSGA-Ⅲ优化算法的梯级水电和火电机组联合多目标调度研究,分析其理论基础、应用优势、挑战与未来发展方向。

一、问题背景与传统调度方法局限性

电力系统的发电机组通常包括水电机组和火电机组。水电机组以其调峰能力强、启停速度快、运行成本低廉、环境友好等优点,在电力系统中扮演着重要角色。尤其在河流上形成的梯级水电站群,通过水库群的联合优化调度,能够最大限度地利用水资源,实现水力发电效益的最大化。然而,水电机组的发电量受水资源条件和水库运行约束的限制,具有一定的随机性和季节性。火电机组则以其发电量稳定、出力可控性强、对水资源依赖性低等特点,作为系统基荷和备用容量的重要组成部分。但其运行成本相对较高,且存在燃料消耗和环境污染问题。

传统的电力调度通常采用单目标优化方法,例如以最小化运行成本或最大化发电效益为单一目标。然而,在实际运行中,电力系统往往面临多个相互冲突的目标。例如,除了经济性,还需考虑环境效益(如污染物排放)、系统安全性(如机组备用容量)、水资源利用效率(如水库水位约束)等。传统的数学规划方法,如线性规划、非线性规划、动态规划等,在处理多目标优化问题时,往往需要将多目标转化为单目标,或采用加权和法、ε约束法等,但这可能导致决策者偏好设定的困难,或无法全面捕捉帕累托最优解集。

此外,梯级水电和火电机组的联合调度问题具有高度非线性、多变量、多约束、时空耦合的特点。水电机组的发电量与水头、流量、机组效率等因素非线性相关,且上游水库的泄流直接影响下游水库的入库流量。火电机组的启停和出力调节也存在复杂的约束条件。这些特性使得传统优化方法在处理大规模、高维度的复杂调度问题时,往往面临计算效率低、易陷入局部最优、难以适应动态变化等挑战。

二、NSGA-Ⅲ算法的理论基础与优势

为了有效应对多目标优化问题以及梯级水电和火电机组联合调度的复杂性,多目标进化算法(MOEA)应运而生。NSGA-Ⅲ(Non-dominated Sorting Genetic Algorithm-Ⅲ)作为新一代多目标进化算法的代表,在解决高维多目标优化问题方面展现出卓越的性能。

2.1 NSGA-Ⅲ的核心思想

NSGA-Ⅲ算法继承了NSGA-Ⅱ的非支配排序和拥挤距离选择机制,但在选择环节引入了基于参考点的多样性维护策略。其核心思想在于:

  1. 非支配排序:

     算法首先将种群中的个体根据支配关系进行分层,形成若干个非支配前沿(Pareto front)。位于第一非支配前沿的个体是所有个体中最优的非支配解。

  2. 参考点引导:

     NSGA-Ⅲ引入了一组均匀分布的参考点,这些参考点通常位于标准化后的目标空间中。

  3. 小生境保护与多样性维护:

     算法在选择下一代种群时,不仅考虑了个体的非支配级别,更重要的是基于参考点来选择个体。对于每个参考点,算法会选择离其最近的非支配个体,并通过小生境技术来确保参考点周围的个体多样性,避免种群过早收敛和解集分布不均匀。具体而言,算法会计算每个非支配个体与参考点之间的距离,并根据每个参考点覆盖的个体数量来选择下一代种群。这种机制使得NSGA-Ⅲ在高维多目标问题中能够有效地维持种群多样性,避免退化到局部最优,并获得分布均匀的帕累托前沿。

2.2 NSGA-Ⅲ在联合调度中的优势

NSGA-Ⅲ算法在梯级水电和火电机组联合多目标调度中展现出以下显著优势:

  1. 多目标处理能力:

     NSGA-Ⅲ能够同时优化多个相互冲突的目标,例如最小化运行成本、最小化污染物排放、最大化水力发电量、保证系统可靠性等,无需将多目标转换为单目标,从而提供一组帕累托最优解集,供决策者根据实际偏好进行权衡选择。

  2. 应对非线性与复杂约束:

     作为一种启发式算法,NSGA-Ⅲ对目标函数和约束条件的数学特性(如可微性、凸性)没有严格要求,能够很好地处理发电量与水头、流量的非线性关系,以及机组启停、爬坡速率、水库水位、库容等复杂的非线性、离散型约束。

  3. 全局搜索能力:

     进化算法的群体搜索特性使其能够有效避免陷入局部最优,从而在复杂的调度问题中寻找到全局或接近全局的最优解。

  4. 适应性与鲁棒性:

     算法能够较好地适应电力系统运行环境的变化,例如负荷波动、水文条件变化等。

  5. 提供帕累托前沿:

     算法输出的是一个帕累托最优解集,而非单一最优解。这使得决策者能够清晰地了解不同优化目标之间的权衡关系,从而做出更加明智的决策。

三、梯级水电和火电机组联合多目标调度模型构建

基于NSGA-Ⅲ算法的联合调度研究,首先需要构建一个科学合理的数学模型,明确优化目标、决策变量和约束条件。

3.1 优化目标

联合调度的优化目标通常包括:

图片

图片

    3.2 决策变量

    图片

    3.3 约束条件

    图片

    图片

    四、NSGA-Ⅲ算法在联合调度中的具体应用

    将NSGA-Ⅲ算法应用于梯级水电和火电机组联合调度问题,通常遵循以下步骤:

    1. 编码方案设计:

       将决策变量(如火电机组出力、水库泄流量等)编码成染色体。常见的编码方式是实数编码,能够直接表示连续变量。对于离散变量(如启停状态),可以采用二进制编码或引入额外的处理机制。

    2. 初始化种群:

       随机生成一组满足初始约束条件的个体(调度方案),形成初始种群。

    3. 适应度函数评估:

       对于种群中的每个个体,计算其对应的各个目标函数值(如总运行成本、总污染物排放量、水力发电量等)。

    4. 非支配排序与拥挤距离计算(NSGA-Ⅱ部分):

       对当前种群进行非支配排序,划分出不同的帕累托前沿。在NSGA-Ⅱ中,会计算拥挤距离以维护多样性。

    5. 参考点生成与关联:

       根据目标函数维度,在标准化后的目标空间中生成一组均匀分布的参考点。将种群中的个体与最近的参考点进行关联。

    6. 环境选择(NSGA-Ⅲ核心):

       基于非支配排序和参考点关联,从当前种群和子代种群的合并集中选择下一代种群。NSGA-Ⅲ的独特之处在于,它优先选择非支配级别较高的个体,然后通过选择与参考点相关联的个体来维护多样性,避免重要参考点附近的个体被过度淘汰。

    7. 交叉与变异操作:

       对选出的父代个体进行遗传操作,如交叉(模拟基因重组)和变异(模拟基因突变),生成新的子代个体。这些操作旨在探索新的解空间,增加种群的多样性。

    8. 循环迭代:

       重复步骤3-7,直到达到预设的迭代次数或收敛条件。

    9. 输出与决策:

       算法最终输出的是一个帕累托最优解集。决策者可以根据对不同目标函数的偏好,从帕累托前沿中选择最合适的调度方案。例如,如果更看重经济性,可以选择成本最低的方案;如果更看重环境效益,可以选择排放量最小的方案;或者在两者之间进行权衡。

    五、研究展望与挑战

    基于NSGA-Ⅲ的梯级水电和火电机组联合多目标调度研究展现了巨大的潜力,但同时也面临一些挑战和值得深入研究的方向:

    1. 高维多目标问题:

       随着优化目标的增加(如考虑更多种类的污染物、更多的可靠性指标等),问题维度会进一步提高。NSGA-Ⅲ在一定程度上缓解了高维多目标问题中的多样性维护困难,但更高维度的优化仍然是一个挑战。未来可以研究更有效的参考点生成策略或结合其他多样性维护机制。

    2. 动态调度与实时性:

       实际电力系统运行具有强烈的动态性,负荷、水文条件等实时变化。目前的调度研究多集中于日内或短期静态优化。如何将NSGA-Ⅲ应用于滚动优化或在线调度,提高算法的实时性和适应性,是未来的重要研究方向。这可能需要对算法进行并行化改造,或结合预测技术。

    3. 不确定性处理:

       负荷预测误差、水文预报误差等不确定性因素对调度结果影响显著。如何将随机性或模糊性引入模型,并采用鲁棒优化、随机规划或场景分析等方法与NSGA-Ⅲ相结合,以提高调度方案的鲁棒性,是亟待解决的问题。

    4. 算法效率与收敛性:

       尽管NSGA-Ⅲ相比传统算法有优势,但对于大规模、长周期的调度问题,算法的计算效率仍需提升。可以探索结合局部搜索、代理模型或深度学习等技术来加速收敛,提高优化效率。

    5. 多能源系统集成:

       随着风电、光伏、储能等新型能源形式的接入,未来的电力系统将是更加复杂的“源-网-荷-储”一体化系统。如何将梯级水电、火电机组与其他能源形式进行联合优化,构建更全面的多能源系统调度模型,将是更具挑战性和现实意义的研究方向。

    6. 决策支持与可视化:

       帕累托前沿的输出为决策者提供了丰富的选择,但也可能导致决策困难。开发直观的决策支持系统和可视化工具,帮助决策者更好地理解帕累托前沿,并根据自身偏好快速筛选和评估方案,具有重要意义。

    六、结论

    综上所述,基于NSGA-Ⅲ优化算法的梯级水电和火电机组联合多目标调度研究,为电力系统运行的优化提供了强有力的工具。NSGA-Ⅲ凭借其卓越的多目标处理能力、对复杂约束的适应性以及全局搜索能力,能够有效地解决传统方法难以应对的挑战,为决策者提供经济、环境、可靠等多维度权衡的帕累托最优调度方案。尽管在处理高维问题、动态调度和不确定性等方面仍存在挑战,但随着算法的不断发展和计算能力的提升,NSGA-Ⅲ及其改进算法必将在未来智能电网的建设中发挥更为关键的作用,促进电力系统向更加绿色、高效、智能的方向发展。

    ⛳️ 运行结果

    图片

    参考文献

    [1] 王铮.梯级水电站群联合优化调度及其决策方法[D].华北电力大学,2014.DOI:10.7666/d.d088227.

    [2] 徐强.基于NSGA-Ⅲ算法的分布式光伏储能系统优化配置方法[J].综合智慧能源, 2025, 47(1):26-33.DOI:10.3969/j.issn.2097-0706.2025.01.004.

    [3] 何向阳,周建中,张勇传,等.基于改进NSGA-Ⅱ的梯级水电站多目标发电优化调度[J].武汉大学学报:工学版, 2011, 44(6):6.DOI:CNKI:SUN:WSDD.0.2011-06-009.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    matlab科研助手

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值