✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在我们的日常生活中,低光照环境下拍摄的图像常常让我们感到困扰。想象一下,当你在夜晚漫步于城市街头,想要捕捉那璀璨的夜景,或是在室内光线较暗的角落记录下温馨的瞬间,拍出来的照片却往往不尽人意。画面昏暗,细节模糊不清,色彩也黯淡无光,原本美好的场景在照片中失去了应有的魅力。
而在专业领域,低光照图像带来的影响更为严重。在安防监控领域,夜间或光线不足区域的监控画面如果是低光照图像,会使得监控人员难以看清画面中的人物、物体等关键信息,可能导致无法及时发现潜在的安全威胁,如盗窃、破坏等行为,给社会治安带来隐患。在自动驾驶领域,摄像头作为车辆感知周围环境的重要 “眼睛”,当处于低光照条件下,获取的图像质量不佳,自动驾驶系统可能无法准确识别道路标志、行人、车辆等,像 2018 年 Uber 自动驾驶汽车在低光照条件下未能准确检测到行人而导致的严重事故,就凸显了这一问题的严重性,直接威胁到行车安全。在生物医学成像中,为了降低光毒性,一些场景需要在低光照下进行成像,但低光照图像中信息的缺失,会给后续的疾病诊断、生物研究等工作带来极大的困难,可能导致误诊或研究结果的偏差。
低光照图像存在的这些问题,严重影响了图像的视觉效果和信息传递,因此,低光照图像增强技术的发展显得尤为重要。它不仅能够满足我们日常生活中对美好画面记录的需求,更在众多专业领域中发挥着关键作用,为解决低光照图像带来的困境提供了有效的途径
Retinex 模型在图像增强中的应用与优势
Retinex 模型在图像增强领域有着广泛的应用,它就像是一位神奇的 “魔法师”,能够让低光照图像焕发出新的光彩。在安防监控领域,它的作用尤为显著。想象一下,在一个深夜的监控场景中,光线非常昏暗,传统的图像可能只能呈现出一片模糊的黑影,难以分辨出任何有用的信息。但通过 Retinex 模型的处理,监控画面中的细节被清晰地展现出来,人物的轮廓、车辆的型号等关键信息都变得一目了然,大大提高了监控系统的有效性,为保障社会治安提供了有力的支持。
在医学影像领域,Retinex 模型也发挥着重要的作用。在一些低光照条件下拍摄的医学影像,比如某些 X 射线图像或者内窥镜图像,往往存在对比度低、细节模糊的问题,这给医生的诊断带来了很大的困难。而 Retinex 模型能够增强这些图像的对比度,使病变部位更加清晰地呈现出来,帮助医生更准确地发现潜在的健康问题,为患者的治疗提供了重要的依据。例如,在对肺部的 X 光图像进行处理时,经过 Retinex 模型增强后,肺部的纹理和病灶能够更加清晰地显示,有助于医生及时发现肺部疾病,如肺炎、肺结核等。
Retinex 模型之所以能够在图像增强中取得如此出色的效果,得益于它的诸多优势。Retinex 模型能够有效地增强图像的对比度,使图像中的亮部更亮,暗部更暗,从而突出图像的细节信息。在一张低光照的风景照片中,原本模糊的山峦轮廓和树木纹理,在经过 Retinex 模型处理后,变得清晰可辨,让整个画面更加生动和富有层次感。它还能够在一定程度上保留图像的自然色彩,不会像一些其他增强方法那样导致颜色失真。这使得增强后的图像在视觉上更加真实和舒适,更符合人眼的观察习惯。 此外,Retinex 模型对不同类型的低光照图像都具有较好的适应性,无论是由于光线不足、背光还是光照不均匀等原因导致的低光照问题,它都能发挥出良好的增强效果。这种强大的适应性使得 Retinex 模型在各种实际应用场景中都具有很高的实用价值,成为了图像增强领域中不可或缺的重要工具。
多尺度融合:提升图像细节的秘密武器
多尺度融合技术解析
多尺度融合技术,就像是一位技艺精湛的大厨,将不同尺度下的图像特征信息巧妙地整合在一起,为我们呈现出一道视觉盛宴。在图像的世界里,不同尺度代表着不同层次的细节和结构信息。简单来说,大尺度关注的是图像的整体轮廓和大致结构,就像我们远远地看一座城市,能看到城市的整体布局和主要地标建筑;而小尺度则聚焦于图像的局部细节,比如城市中某栋建筑的窗户、装饰等细微之处。
多尺度融合技术的实现方式多种多样,其中一种常见的方法是基于图像金字塔的构建。想象一下,我们把图像看作是一座金字塔,从塔顶到塔底,图像的分辨率逐渐降低,尺寸逐渐变小。在这个金字塔结构中,每一层都包含了不同尺度的图像信息。通过对这些不同尺度图像进行处理和融合,我们可以充分利用图像在各个尺度下的特征优势。在对一幅低光照的风景图像进行处理时,我们可以在大尺度下对图像的整体亮度和对比度进行调整,让整个画面的光照更加均匀,色彩更加协调;在小尺度下,我们则可以着重增强图像中物体的边缘和纹理细节,比如树叶的脉络、石头的纹理等,使这些细节更加清晰可见。通过将大尺度和小尺度下处理后的图像进行融合,我们就能够得到一幅既具有良好整体视觉效果,又保留了丰富细节信息的增强图像。
在深度学习领域,多尺度融合也有着独特的实现方式。以卷积神经网络(CNN)为例,它可以通过不同大小的卷积核来提取不同尺度的特征。较小的卷积核能够捕捉到图像中的局部细节特征,就像用放大镜观察图像的局部;而较大的卷积核则可以获取图像的全局结构信息,如同站在远处俯瞰整个图像。然后,通过一些特定的网络结构,如特征金字塔网络(FPN),将这些不同尺度的特征进行融合。FPN 就像是一个信息整合器,它能够在不同层次的网络中传递和融合特征信息,使得网络在处理图像时能够同时兼顾全局和局部信息,从而提升对图像的理解和处理能力 。
多尺度融合在低光照图像增强中的关键作用
在低光照图像增强的舞台上,多尺度融合技术扮演着举足轻重的角色,它就像是一把万能钥匙,能够打开低光照图像中被隐藏的细节之门。低光照图像往往伴随着噪声的干扰,这些噪声就像一个个调皮的小怪兽,在图像中肆意捣乱,使得图像的细节变得模糊不清。而多尺度融合技术可以通过在不同尺度上对图像进行处理,有效地减少噪声的影响。在大尺度下,图像的噪声相对较为平滑,我们可以通过一些滤波算法对其进行初步的抑制;在小尺度下,我们可以针对残留的噪声进行更加精细的处理,通过对局部细节的增强,突出图像的真实信息,进一步降低噪声对图像的干扰。这样,经过多尺度融合处理后,图像中的噪声得到了有效的控制,细节信息得以清晰地展现出来。
不同场景下的低光照图像具有各自独特的复杂性和多样性,这就好比不同的人有着不同的性格和特点。有些低光照图像可能是由于光线不足导致整体亮度偏低,有些可能是因为光照不均匀而出现局部过暗或过亮的情况,还有些可能同时存在颜色失真等问题。多尺度融合技术能够很好地适应这些复杂多样的情况。它可以根据图像在不同尺度下的特征表现,灵活地调整增强策略。对于整体亮度偏低的图像,在大尺度下可以重点提升图像的整体亮度;对于光照不均匀的图像,在小尺度下可以针对局部区域进行对比度增强和亮度调整,使图像的光照更加均匀;对于颜色失真的图像,多尺度融合技术也可以通过对不同尺度下颜色特征的分析和处理,尽可能地恢复图像的真实颜色。这种强大的适应性使得多尺度融合技术在面对各种复杂的低光照图像时,都能够发挥出良好的增强效果,为后续的图像分析和处理提供高质量的图像数据 。
基于 Retinex 模型和多尺度融合的低光照图像增强算法实现
算法流程详细步骤
基于 Retinex 模型和多尺度融合的低光照图像增强算法,犹如一场精密的交响乐演奏,每个步骤都紧密配合,共同创造出令人惊叹的图像增强效果。
首先是图像预处理环节,这一步就像是为即将进行的 “艺术创作” 准备干净的画布。低光照图像往往伴随着噪声的干扰,这些噪声就像画布上的污渍,会影响后续的处理效果。因此,我们需要使用一些降噪算法,如高斯滤波、中值滤波等,来去除图像中的噪声。以高斯滤波为例,它通过对图像中的每个像素点及其邻域像素点进行加权平均,使得图像变得更加平滑,从而有效地减少了噪声的影响 。此外,去除阴影也是预处理中的重要任务。阴影会使图像的局部区域变得过暗,导致细节丢失。我们可以通过一些基于图像分割或形态学处理的方法来检测并去除阴影,让图像的光照分布更加均匀。
完成预处理后,就进入了多尺度分解阶段。这一步就像是将一幅完整的画作拆解成不同层次的草图,每个草图都包含了不同尺度的信息。我们通过对图像进行高斯滤波和下采样操作,得到不同尺度的图像。高斯滤波就像是给图像蒙上了一层半透明的薄纱,使图像变得模糊,从而突出了图像的低频信息,也就是大尺度的结构信息。而下采样则是将图像的尺寸逐渐缩小,进一步提取出图像在不同尺度下的特征。假设我们有一张原始图像,经过一次高斯滤波和下采样后,得到了一个尺度较小的图像,这个图像保留了原始图像的大致轮廓和主要结构;再经过多次这样的操作,我们就可以得到一系列不同尺度的图像,这些图像就像是不同分辨率的地图,从宏观到微观,展示了图像的丰富信息。
接下来是亮度和对比度调整,这是整个算法的核心环节之一,就像是为画作精心调配色彩和明暗度。对于每个尺度的图像,我们分别进行亮度和对比度的调整。在亮度调整方面,我们可以根据图像的直方图信息,对图像的亮度进行拉伸或压缩,使图像的亮度分布更加合理。如果图像整体偏暗,我们可以通过增加每个像素点的亮度值,让图像变得更亮;反之,如果图像过亮,我们可以适当降低亮度。在对比度调整中,我们可以使用一些非线性变换方法,如伽马校正,来增强图像的对比度。伽马校正就像是一个神奇的调光器,它可以根据不同的伽马值,对图像的暗部和亮部进行不同程度的调整,使图像的细节更加明显,色彩更加鲜艳 。
完成各个尺度图像的亮度和对比度调整后,就到了多尺度图像组合阶段。这一步就像是将之前拆解的不同层次草图重新组合成一幅完整的画作,而且是一幅更加精彩的画作。我们将调整后的不同尺度图像进行多尺度重建,通过一些融合策略,如加权平均、拉普拉斯金字塔融合等,将这些图像融合在一起。加权平均融合策略就像是在制作水果沙拉时,根据不同水果的甜度和口感,给它们分配不同的比例,然后混合在一起。在图像融合中,我们会根据每个尺度图像的重要性,为它们分配不同的权重,然后将它们相加,得到最终的增强图像。拉普拉斯金字塔融合则是利用拉普拉斯金字塔的特性,将不同尺度图像的高频和低频信息进行有效的融合,从而得到更加清晰、自然的增强图像
⛳️ 运行结果
📣 部分代码
fusion = our(Img);
subplot(224),imshow(fusion),title("最终输出图像");
% figure,imshow(fusion),title('最终输出图像');
%图像质量评价
Brisque = brisque(fusion); %越小越好
CEIQ = ceiq(fusion); %越大越好
ENIQA = eniqa(fusion); %越小越好
NIQE = niqe(fusion); %越小越好
PIQE = piqe(fusion); %越小越好
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇