基于节点导纳矩阵的三相配电系统建模附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍


 随着现代电力系统的日益复杂,精确高效的配电系统建模成为电力系统分析、规划与运行的关键。本文深入探讨了基于节点导纳矩阵的三相配电系统建模方法。首先,阐述了节点导纳矩阵在电力系统分析中的基础理论及其构建原理。其次,详细论述了如何针对三相配电系统的特性,考虑其不平衡性、非对称性以及各种元件(如输电线路、变压器、负荷等)的连接方式,构建精确的三相节点导纳矩阵。最后,通过案例分析,验证了该建模方法在潮流计算、故障分析等方面的有效性和实用性,为配电系统的优化运行与智能控制提供了理论依据与技术支撑。

关键词: 节点导纳矩阵;三相配电系统;不平衡性;建模;电力系统分析


1. 引言

电力系统是现代社会赖以生存和发展的重要基础设施。配电系统作为电力系统的重要组成部分,其安全、稳定、经济运行直接影响着社会经济发展和人民生活质量。近年来,随着分布式电源(如光伏、风电)的并网、电动汽车的普及以及智能电网技术的发展,配电系统的结构日益复杂,运行特性呈现出多变性和不确定性。传统的基于单相等效的配电系统分析方法,由于忽略了三相系统固有的不平衡性和非对称性,已难以满足现代配电系统精细化分析的需求。

在此背景下,基于三相节点导纳矩阵的建模方法应运而生,并逐渐成为配电系统分析的主流方法。该方法能够充分考虑三相配电系统的耦合特性和不平衡运行状态,为潮流计算、故障分析、继电保护配合、电压无功优化以及有源配电网的调度运行等提供了更为精确和全面的数学模型。本文旨在系统地探讨基于节点导纳矩阵的三相配电系统建模方法,旨在为相关研究和工程实践提供参考。

2. 节点导纳矩阵基础理论

节点导纳矩阵(Nodal Admittance Matrix),通常表示为Y矩阵,是电力系统分析中一个核心概念。它反映了电力系统中各节点之间的导纳关系,即将电路中各节点电压与注入电流之间的关系用矩阵形式表示出来。对于一个包含N个节点的电力系统,其节点导纳矩阵是一个N×N的方阵,其元素可以表示为:

I = YV

其中,I是节点注入电流向量,V是节点电压向量,Y是节点导纳矩阵。

节点导纳矩阵的对角线元素Yii表示节点i的自导纳,即连接到节点i的所有支路导纳之和;非对角线元素Yij(i≠j)表示节点i和节点j之间的互导纳,通常等于连接节点i和节点j的支路导纳的负值。如果节点i和节点j之间没有直接连接的支路,则Yij为零。

构建节点导纳矩阵的主要步骤包括:

  1. 节点编号:

     对配电系统中的所有母线节点进行编号。

  2. 支路导纳计算:

     根据输电线路、变压器、并联电容器等元件的参数,计算其等效导纳。

  3. 矩阵填充:

     按照自导纳和互导纳的定义,将计算出的支路导纳填充到节点导纳矩阵的相应位置。

节点导纳矩阵具有对称性(对于无互感耦合的线性无源网络)、稀疏性和非奇异性等特点,这些特性在电力系统计算中具有重要的应用价值,例如可以提高计算效率和数值稳定性。

3. 三相配电系统特性分析

三相配电系统与传统电力系统存在显著差异,主要体现在以下几个方面:

  1. 不平衡性:

    • 负荷不平衡:

       居民负荷、商业负荷以及部分工业负荷往往是单相或两相的,导致三相负荷不对称分布。

    • 线路参数不平衡:

       配电线路(特别是架空线)通常采用不规则的导线排列,导致三相线路参数(电阻、电抗)不一致。

    • 分布式电源不平衡:

       部分分布式电源可能采用单相或两相接入,进一步加剧系统的不平衡性。
      不平衡性导致三相电压、电流幅值和相角不对称,从而产生负序和零序分量,对系统运行产生不利影响。

  2. 非对称性:

    • 变压器非对称:

       配电网中存在大量的Yyn0、Dyn11等多种接线方式的变压器,这些变压器本身具有相移和零序隔离等特性,需要采用三相模型精确描述。

    • 接地方式:

       配电系统通常采用中性点直接接地、经电阻接地或不接地等多种接地方式,不同的接地方式对零序电流的流通路径和短路电流计算有重要影响。

  3. 多分支多电源: 现代配电网结构日益复杂,呈现出多分支、多电源接入的特点,形成了大量的辐射状和局部环网结构,对潮流计算和故障定位提出了更高的要求。

  4. 低电压等级: 配电系统电压等级相对较低,线路阻抗与电阻的比值(X/R)通常较小,电阻分量在潮流计算和电压损耗中占据更重要的地位。

充分考虑上述特性,是构建精确三相节点导纳矩阵的基础。

4. 基于节点导纳矩阵的三相配电系统建模方法

三相配电系统建模的核心在于构建其三相节点导纳矩阵。这需要对系统中的各种元件进行三相等效建模,并将其组合成完整的系统矩阵。

4.1. 线路元件的三相模型

配电线路是配电系统中最常见的元件。对于三相输电线路,其自阻抗和互阻抗是需要重点考虑的。考虑地面效应,每相线路的阻抗由自阻抗和互阻抗组成。

4.2. 变压器元件的三相模型

变压器是配电系统中的关键元件,其接线方式多样,如Yyn0、Dyn11等,且通常具有相移和零序隔离功能。因此,变压器的精确三相建模至关重要。

以Yyn0接线变压器为例,其原边和副边电压电流关系可以通过考虑变压器自身的漏抗、励磁导纳以及相移角进行建模。由于变压器接线方式的复杂性,通常采用两端口网络或派型等效电路来表示。在构建三相节点导纳矩阵时,变压器通常被视为一个多端口元件,其输入和输出端的相量电压和电流之间存在耦合关系。通过适当的变换矩阵,可以将变压器的阻抗参数转换为导纳参数,并反映到节点导纳矩阵中。例如,可以通过将变压器表示为阻抗矩阵,然后进行求逆得到其导纳矩阵,或者利用对称分量法进行模型转化。

4.3. 负荷建模

配电系统中的负荷具有多样性,包括恒阻抗负荷、恒电流负荷和恒功率负荷。在三相建模中,负荷可以分为对称负荷和不平衡负荷。不平衡负荷可以表示为连接在各相和中性点之间的导纳或阻抗。

4.4. 其他元件建模

  • 电容器组:

     配电系统中的并联电容器组通常用于无功补偿和电压支撑。其三相模型可以表示为并联在各相母线上的纯容性导纳。

  • 分布式电源:

     光伏、风电等分布式电源的接入方式和控制策略不同,其建模也需要考虑其功率输出特性和并网逆变器的控制模式。在三相建模中,分布式电源可以被等效为注入电流源或PQ节点。

  • 开关、断路器:

     这些元件在正常运行时可以视为理想导体,在故障分析时则需要考虑其开断特性。

4.5. 节点导纳矩阵的构建与集成

在对所有元件进行三相建模后,即可将这些元件的导纳参数集成到总的三相节点导纳矩阵中。对于一个N个母线的三相配电系统,其总的节点导纳矩阵将是一个3N×3N的方阵。矩阵的填充遵循节点导纳矩阵的基本规则:

  • 对角线元素:

     对应于每个相节点的自导纳,即连接到该相节点的所有元件的三相导纳矩阵中对应元素的总和。

  • 非对角线元素:

     对应于不同相节点之间的互导纳,即连接这两个相节点的所有元件的三相导纳矩阵中对应元素的负值。

需要注意的是,在构建过程中,应统一参考相序(ABC)和基准电压,以确保矩阵的正确性。对于含有中性点接地的情况,还需要考虑中性点与地之间的连接,可能需要引入一个零序节点或采用缩减矩阵法。

5. 应用与案例分析

基于节点导纳矩阵的三相配电系统模型在电力系统分析中具有广泛的应用,包括但不限于:

5.1. 三相不平衡潮流计算

三相不平衡潮流计算是配电系统分析的基础。通过构建精确的三相节点导纳矩阵,可以求解三相节点电压和支路电流,从而评估系统电压分布、线路损耗、无功功率裕度等。

案例: 某不平衡配电网的潮流计算。
假设一个包含3个母线(母线1为平衡电源节点,母线2、3为负荷节点)的简化三相配电系统,考虑线路参数不平衡和负荷不平衡。

  1. 构建三相节点导纳矩阵:

     根据线路的三相阻抗和负荷的连接方式,构建一个9x9的三相节点导纳矩阵。

  2. 设置边界条件:

     母线1的电压作为已知量。负荷节点注入电流或功率为已知量。

  3. 迭代求解:

     通过牛顿-拉夫逊法或PQ分解法等迭代算法,求解非平衡潮流方程:I = YV

  4. 结果分析:

     获得各节点的三相电压幅值和相角,以及各支路的三相电流。分析发现,由于不平衡性,各相电压幅值和相角存在差异,可能出现负序和零序电压。

5.2. 三相短路故障分析

短路故障是电力系统中最常见的故障类型之一。基于三相节点导纳矩阵可以精确计算各种类型(单相接地、两相短路、三相短路等)的短路电流。

案例: 某配电网单相接地故障分析。

  1. 构建故障前的三相节点导纳矩阵。
  2. 设置故障条件:

     对于单相接地故障,例如A相接地,则故障点A相电压为零,同时注入一个未知电流。

  3. 修改节点导纳矩阵:

     在故障点,将故障相与地连接,相应地修改节点导纳矩阵。

  4. 求解故障方程:

     利用节点导纳矩阵求解故障后的系统方程,得到故障点的短路电流和各节点电压。

  5. 结果分析:

     计算得到的短路电流包含零序分量,与实际故障情况相符,有助于继电保护的整定和故障定位。

5.3. 继电保护配置

精确的故障电流计算为继电保护装置的整定提供了基础数据。在不平衡配电网中,传统基于正序阻抗的保护原理可能失效,需要考虑负序和零序电流。基于三相节点导纳矩阵可以全面评估各种故障情况下的电流分布,指导保护装置的正确配置和协调配合。

6. 结论

基于节点导纳矩阵的三相配电系统建模方法是当前配电系统分析领域的重要方向。本文系统阐述了该方法的理论基础、构建原理以及在各种元件建模中的具体实现。该方法能够有效处理配电系统的三相不平衡性和非对称性,为潮流计算、故障分析以及继电保护等提供了更加精确和可靠的数学模型。

随着智能电网和有源配电网的快速发展,未来研究可以进一步关注以下方面:

  1. 动态建模:

     引入动态元件(如分布式电源的并网逆变器、储能系统)的动态特性,构建三相动态节点导纳矩阵,以支持暂态稳定分析。

  2. 随机性与不确定性:

     考虑分布式电源出力和负荷的随机性,结合蒙特卡洛仿真等方法,进行概率潮流计算和风险评估。

  3. 多目标优化:

     将三相节点导纳矩阵模型应用于配电网的优化规划和运行中,如电压无功优化、故障恢复和微网调度等。

  4. 数据驱动建模:

     结合大数据和人工智能技术,通过历史数据学习配电网的运行特性,进一步优化和完善基于物理模型的节点导纳矩阵。

⛳️ 运行结果

图片

图片

🔗 参考文献

[1] 刘一鸣.风电接入LCC-HVDC系统阻抗建模与稳定性分析[D].浙江大学,2023.

[2] 党常亮.Matlab/Simulink在"电力系统分析"教学中的应用[J].高教学刊, 2019(12):3.DOI:CNKI:SUN:GJXK.0.2019-12-035.

[3] 邓海鹰,谢锡锋,施华.基于PowerWorld&MATLAB的任意时刻短路电流计算研究[J].数字技术与应用, 2011(7):2.DOI:CNKI:SUN:SZJT.0.2011-07-071.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值