✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
在电力传输、航空航天等领域,设备表面结冰会带来严重危害,如输电线路覆冰可能导致线路断裂、倒塔,飞机机翼结冰会影响飞行安全 。光纤结冰传感器凭借其抗电磁干扰、灵敏度高、可实现分布式测量等优势,成为监测结冰状况的重要手段。通过对光纤结冰传感器进行建模,可以深入理解其工作机制,优化传感器设计,提高监测准确性和可靠性。本文将围绕光纤结冰传感器的建模展开研究,从传感器工作原理出发,构建相应的数学模型,并对模型进行验证与分析。
二、光纤结冰传感器工作原理
光纤结冰传感器主要基于光纤的光学特性变化来感知结冰情况,常见的类型有基于光纤光栅的传感器和基于光纤应变效应的传感器 。
2.1 基于光纤光栅的传感器原理
光纤光栅是通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅。当光纤光栅周围环境温度、应变等发生变化时,会导致光栅周期和纤芯折射率改变,从而引起反射光中心波长的漂移 。在结冰监测中,冰层的增长会对光纤产生应变,进而使光纤光栅的反射波长发生变化,通过检测波长漂移量,就可以得知冰层的厚度、生长速度等信息。
2.2 基于光纤应变效应的传感器原理
根据光纤的应变 - 光学效应,当光纤受到外力作用发生拉伸或压缩应变时,其折射率会发生变化,从而影响光在光纤中的传播特性 。在结冰过程中,冰层的重量和膨胀会对光纤施加应力,导致光纤产生应变,引起光的强度、相位等参数改变。通过测量光参数的变化,能够实现对结冰状况的监测。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 陈昕冉,葛红娟,李世宇,等.航空用接近传感器环境影响因素分析与建模仿真[J].测控技术, 2023, 42(8):31-37.
[2] 王华,王立权,张滨华.基于BP网络的结冰传感器非线性校正方法[J].工业仪表与自动化装置, 2005(2):3.DOI:10.3969/j.issn.1000-0682.2005.02.016.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类