✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在时序数据分析的前沿领域,随着数据规模的爆炸式增长与复杂度的不断攀升,传统方法在时序聚类与状态识别任务上的局限性愈发凸显。模糊 C 均值(FCM)算法作为经典的聚类方法,虽能处理模糊边界的时序数据,但其易陷入局部最优的缺陷严重制约了聚类精度。为突破这一困境,引入改进鹈鹕算法(Improved Pelican Optimization Algorithm,IPOA)对 FCM 进行优化,并与 Transformer 相结合,构建改进 IPOA-FCM-Transformer 组合模型,为时序数据分析带来全新的解决方案与技术突破。
一、核心算法原理
1.1 模糊 C 均值(FCM)算法
1.3 Transformer 架构
Transformer 基于自注意力机制,彻底革新了时序数据处理模式。自注意力机制能够使模型在处理数据时,同时关注输入序列的不同位置,有效捕捉长距离依赖关系,克服了传统循环神经网络(RNN)在处理长序列时的梯度消失和梯度爆炸问题。在时序数据处理过程中,Transformer 通过多头注意力机制从多个角度对数据特征进行提取和融合,将原始时序数据映射为高维、抽象且富含语义信息的特征向量。这些特征向量不仅包含了数据的时间依赖关系,还挖掘出了数据内在的复杂模式,为后续的状态识别任务提供了强大的特征支持,极大提升了状态识别的准确性和可靠性。
二、改进 IPOA-FCM-Transformer 模型融合实现
2.1 IPOA 优化 FCM 实现时序聚类
对原始时序数据进行归一化、去噪等预处理操作,为后续处理奠定基础。将改进鹈鹕算法(IPOA)与模糊 C 均值算法(FCM)相结合,IPOA 初始化粒子群,每个粒子对应一组 FCM 的簇中心。在迭代优化过程中,IPOA 依据动态搜索策略和自适应信息共享机制,不断调整粒子位置,计算每个粒子对应的 FCM 目标函数值作为适应度,通过适应度评价引导粒子向更优的簇中心位置搜索。当达到预设的最大迭代次数或适应度收敛条件时,IPOA 得到最优的簇中心和隶属度矩阵,完成对时序数据的高效聚类,将具有相似变化趋势和特征的时序数据准确划分到同一簇中,为后续分析提供高质量的数据分组。
2.2 Transformer 特征提取
将 IPOA 优化后的 FCM 聚类结果,即各个簇的时序数据,分别输入到 Transformer 模型中。Transformer 利用自注意力机制和多层 Transformer 层,对每个簇的时序数据进行深度特征提取。在提取过程中,多头注意力机制从不同维度和视角对数据进行分析,挖掘数据中的复杂模式、长期依赖关系以及潜在特征。经过 Transformer 的处理,每个簇的时序数据被转换为高维特征向量,这些特征向量高度浓缩了该簇数据的核心特征和内在规律,为状态识别任务提供了丰富且具有代表性的输入特征。
2.3 基于特征的状态识别
以 Transformer 提取的高维特征向量作为输入,结合合适的分类器(如全连接神经网络或多层感知机)构建状态识别模型。通过有监督学习的方式,利用标注好的训练数据对模型进行训练,使模型学习不同状态下时序数据特征的模式和差异。在训练过程中,模型不断调整参数,优化对特征的识别和分类能力。训练完成后,该模型能够根据输入的特征向量,准确判断时序数据所属的状态,实现对时序数据状态的精准识别,在工业设备故障诊断、交通流量状态监测等实际应用场景中发挥重要作用。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类