✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、研究背景与意义
随着全球对清洁能源的需求不断增长,分布式能源(Distributed Energy Resources,DER)如太阳能光伏、风力发电、小型水电站等得到了广泛应用。这些分布式能源接入配电网,在提高能源利用效率、减少碳排放的同时,也给传统配电网的运行与控制带来了新的挑战。弹性配电网旨在提高配电网应对各种不确定性和扰动的能力,以保障供电可靠性和电能质量 。而孤岛划分作为弹性配电网运行控制的关键技术之一,在电网故障或特殊运行工况下,能够将包含分布式能源的部分配电网与主网断开,形成相对独立的孤岛运行模式,维持重要负荷供电,提高系统的生存能力和恢复能力。基于 IEEE33 节点系统展开分布式能源接入弹性配电网的孤岛划分研究,有助于为实际配电网的优化运行和控制提供理论支持与实践指导。
二、IEEE33 节点模型概述
IEEE33 节点系统是电力系统研究领域广泛使用的标准测试系统。该系统包含 33 个节点、32 条支路,其拓扑结构和参数设置具有典型的配电网特征。节点 1 为平衡节点,用于连接主网,其余节点为负荷节点,涵盖了不同类型和大小的有功、无功负荷。在研究分布式能源接入弹性配电网时,IEEE33 节点系统为分析配电网的潮流分布、电压稳定性以及孤岛划分等问题提供了一个标准化、可操作的平台。通过对该系统的研究,可以将所得结论和方法推广应用到实际的配电网中。
三、分布式能源接入对弹性配电网的影响
3.1 电源结构与潮流分布变化
分布式能源的接入改变了配电网传统的单电源辐射状结构,使配电网转变为多源网络。不同类型的分布式能源具有不同的输出特性,如太阳能光伏受光照强度影响、风力发电受风速变化影响,这些不确定性导致配电网的潮流分布变得更加复杂,可能出现双向潮流,增加了配电网运行控制的难度。
3.2 电压稳定性挑战
分布式能源的接入位置和容量大小会对配电网的电压产生影响。当分布式能源输出功率波动较大时,可能导致局部节点电压偏移甚至越限,威胁配电网的电压稳定性。在进行孤岛划分时,需要充分考虑分布式能源对电压的影响,确保孤岛内各节点电压维持在合理范围内。
3.3 保护与控制策略调整
分布式能源的接入改变了配电网的短路电流大小和方向,使得传统的继电保护装置可能出现误动作或拒动作的情况。此外,孤岛划分后,孤岛内的分布式能源需要具备独立运行控制能力,以维持孤岛系统的频率和电压稳定,这对配电网的保护与控制策略提出了新的要求。
四、基于 IEEE33 节点的孤岛划分方法
4.1 孤岛划分目标与原则
孤岛划分的主要目标是在保障重要负荷供电的前提下,实现孤岛内功率的平衡,维持系统的稳定运行。划分过程需遵循以下原则:优先保障医院、政府机构等重要负荷的供电;尽量减少孤岛内分布式能源的弃电;确保孤岛内电压和频率稳定在允许范围内;考虑孤岛划分后与主网恢复连接的便利性。
4.2 孤岛划分模型构建
以 IEEE33 节点系统为基础,建立包含分布式能源接入的弹性配电网孤岛划分数学模型。模型以孤岛内重要负荷供电量最大、分布式能源利用率最高以及网络损耗最小为优化目标,考虑节点功率平衡约束、电压约束、线路容量约束等条件。通过引入 0-1 变量来表示支路的通断状态,从而确定孤岛的边界。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 孙洁.配电网故障恢复优化算法研究[D].华北电力大学,2014.DOI:10.7666/d.D528792.
[2] 迟吉运.含分布式电源的配电网重构及故障恢复研究[D].上海电力大学,2016.
[3] 王晶,陈骏宇,金华锋.含分布式电源的配电网动态孤岛划分博弈模型[J].电力系统保护与控制, 2016, 44(14):11.DOI:10.7667/PSPC151430.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类