✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在机器学习的分类任务领域,随着数据维度不断增加,多特征分类预测面临着诸多挑战。传统分类算法在处理高维复杂数据时,往往难以充分挖掘数据特征间的潜在关系,导致分类准确率受限。而概率神经网络(Probabilistic Neural Network,PNN)凭借其独特的概率计算机制和高效的分类性能,为多特征分类预测提供了新的思路和解决方案,在模式识别、故障诊断、数据挖掘等众多领域展现出巨大的应用潜力。
一、PNN 概率神经网络原理
1.1 基本概念与理论基础
PNN 是基于贝叶斯决策理论和概率密度估计构建的一种前馈神经网络。贝叶斯决策理论的核心在于利用先验概率和类条件概率,通过贝叶斯公式计算后验概率,以实现对样本的分类决策。PNN 将这一理论与神经网络结构相结合,通过对训练样本的学习,估计各类别的概率密度函数,进而根据后验概率大小对未知样本进行分类。
1.2 网络结构剖析
PNN 通常由输入层、模式层、求和层和决策层组成。
- 输入层:神经元数量与输入特征数量相同,直接将多特征数据传递到下一层,不进行任何计算,仅起到数据传输的作用。
- 模式层:该层神经元数量等于训练样本数量,每个神经元对应一个训练样本。模式层神经元通过核函数计算输入样本与对应训练样本之间的相似度,常用的核函数为高斯核函数。通过核函数的计算,将输入样本映射到一个概率空间中,反映输入样本与训练样本的相似程度。
- 求和层:每个类别对应一个求和层神经元,它对模式层中属于同一类别的神经元输出进行求和,得到每个类别的概率密度估计值。
- 决策层:根据求和层输出的各类别概率密度估计值,结合先验概率,利用贝叶斯公式计算后验概率,将样本分类到后验概率最大的类别中。
二、PNN 多特征分类预测模型构建
2.1 数据预处理
在进行多特征分类预测前,需要对原始数据进行预处理。首先,对缺失数据进行填充,可采用均值填充、中位数填充或基于模型的填充方法;其次,对数据进行归一化处理,将不同特征的数据映射到相同的取值范围,避免因特征取值范围差异过大而影响模型性能,常见的归一化方法有最小 - 最大归一化和 Z - 分数归一化。
2.2 模型训练
将预处理后的数据划分为训练集和测试集。在训练过程中,确定 PNN 的关键参数,如核函数的平滑参数。平滑参数决定了核函数的宽度,影响着模型对数据的拟合程度和泛化能力。可通过交叉验证的方法,在训练集上对不同平滑参数取值进行测试,选择使分类准确率最高的参数值。然后,将训练集数据输入到 PNN 中,模式层根据核函数计算输入样本与训练样本的相似度,求和层对同类样本进行求和,决策层计算后验概率,完成模型的训练过程。
2.3 模型评估与优化
使用测试集对训练好的 PNN 模型进行评估,常用的评估指标包括准确率、召回率、F1 值和混淆矩阵等。通过分析评估结果,判断模型的性能。如果模型性能未达到预期,可尝试调整平滑参数或增加训练样本数量,对模型进行优化,以提高分类预测的准确性。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 徐旺林,庞雄奇,吕淑英,等.动态概率神经网络及油气概率分布预测[J].石油地球物理勘探, 2005, 40(1).DOI:10.3321/j.issn:1000-7210.2005.01.017.
[2] 徐旺林,庞雄奇,吕淑英,等.动态概率神经网络及油气概率分布预测[J].石油地球物理勘探, 2005.DOI:CNKI:SUN:SYDQ.0.2005-01-019.
[3] 马峰,夏绍玮,童欣,等.基于SOM-PNN分类器的体数据概率分类及绘制[J].计算机学报, 1998, 21(9):6.DOI:10.3321/j.issn:0254-4164.1998.09.009.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类