✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、研究背景与意义
随着无人机技术的飞速发展,多无人机协同执行任务在军事侦察、物资投递、环境监测、应急救援等领域得到广泛应用 。在多无人机协同任务中,合理的任务分配是提高任务执行效率、降低资源消耗、确保任务成功完成的关键。然而,多无人机协同分配问题具有高维度、非线性、多约束等特点,传统的分配方法难以在复杂多变的任务环境中找到最优解。
免疫算法作为一种模拟生物免疫系统自适应和学习机制的智能优化算法,在处理复杂优化问题时具有一定优势,但存在易陷入局部最优、收敛速度慢等问题。模拟退火算法基于固体退火原理,具有较强的全局搜索能力和跳出局部最优的能力。将模拟退火算法引入免疫算法,对多无人机协同分配问题进行优化,能够充分发挥二者优势,为解决多无人机协同分配难题提供新途径,对于提升多无人机系统的协同性能和应用价值具有重要意义。
二、核心算法原理
2.1 模拟退火算法原理
2.2 免疫算法原理
免疫算法(Immune Algorithm,IA)模拟生物免疫系统识别和消除抗原的过程。在多无人机协同分配问题中,将任务分配方案看作抗原,候选解看作抗体 。算法首先初始化抗体种群,通过计算抗体与抗原之间的亲和力(通常基于目标函数值,亲和力越高表示解越优),选择亲和力高的抗体进行克隆操作,对克隆后的抗体进行变异,生成新的抗体;同时,为保持种群多样性,引入免疫记忆细胞和免疫调节机制,淘汰亲和力低的抗体,保留并更新优秀抗体 。通过不断迭代,抗体种群逐渐进化,最终找到接近最优的任务分配方案。免疫算法具有良好的全局搜索能力和自适应能力,但在复杂问题中容易出现早熟收敛现象。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类