✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、研究背景
在信号处理领域,多元变分模态分解(Multivariate Variational Mode Decomposition,MVMD)作为一种先进的自适应信号分解方法,能够将复杂的多变量信号分解为多个具有不同特征的模态分量,在机械故障诊断、生物医学信号分析、金融时间序列处理等众多领域有着广泛的应用前景 。然而,MVMD 算法在实际应用中存在参数难以确定的问题,分解参数的选择对分解结果的准确性和有效性影响极大。不合适的参数设置可能导致模态混叠、过分解或欠分解等现象,降低信号分解质量。
粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的全局优化算法,通过模拟鸟群觅食行为,在解空间中搜索最优解。将 PSO 算法应用于 MVMD 参数优化,能够充分发挥其全局搜索能力,自动寻找 MVMD 的最佳参数组合,提高信号分解的精度和可靠性,为后续基于信号分解的分析与决策提供更优质的数据基础。
二、核心技术原理
2.1 粒子群优化算法(PSO)
PSO 算法中,每个粒子代表问题的一个潜在解,在多维解空间中运动。粒子在每次迭代时,根据自身历史最优位置(Pbest)和群体历史最优位置(Gbest)调整速度和位置。速度更新公式为:
2.2 多元变分模态分解(MVMD)
MVMD 是在变分模态分解(VMD)基础上发展而来的,用于处理多变量信号。其核心思想是通过构建和求解变分模型,将多变量信号分解为多个模态分量。在 MVMD 中,每个模态分量都有对应的中心频率和带宽,通过优化变分模型,使每个模态分量的估计带宽之和最小化,同时确保所有模态分量的和能够精确重构原始信号 。
具体来说,MVMD 将多变量信号分解问题转化为一个约束变分问题,通过引入二次惩罚项和拉格朗日乘子,将约束变分问题转化为无约束变分问题,利用乘子交替方向法(ADMM)进行迭代求解,从而得到各个模态分量及其对应的中心频率。
三、PSO 优化 MVMD 的过程
3.1 确定优化参数与目标函数
在 PSO-MVMD 中,需要确定 MVMD 的关键参数作为 PSO 算法的优化变量,如分解的模态数
K
等。目标函数的设计是优化的关键,通常以信号分解后各模态分量的合理性和有效性为依据。例如,可选择分解后各模态分量的峭度之和作为目标函数,峭度能够反映信号的冲击特性,峭度之和越大,说明分解后的模态分量对信号中冲击特征的提取越充分,分解效果越好 。目标函数表达式为:
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类