基于黑翅鸢优化算法BKA-CNN-LSTM、CNN-LSTM、LSTM、CNN四模型多变量回归预测,多输入单输出Matlab实现

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在当今数字化时代,多变量回归预测在众多领域中都发挥着举足轻重的作用。在金融领域,它能够综合利率、汇率、宏观经济指标等多个变量,预测股票价格走势,帮助投资者制定合理的投资策略,规避风险,实现资产的稳健增长。在能源领域,结合光照强度、温度、湿度等多变量,预测光伏功率,对于优化能源调度、提高能源利用效率意义重大,有助于推动清洁能源的广泛应用。在交通领域,通过分析历史交通流量、时间、天气状况等因素,预测未来交通拥堵情况,从而为交通管理部门制定科学的交通疏导方案提供依据,缓解城市交通压力。

为了实现高精度的多变量回归预测,研究人员不断探索和应用各种模型,其中卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆网络(Long Short-Term Memory,LSTM)以及它们的组合模型 CNN - LSTM 备受关注。CNN 最初主要应用于图像识别领域,其卷积层能够通过卷积核在输入数据上滑动进行卷积操作,自动提取数据中的局部特征,池化层则可降低数据维度,减少计算量,同时保留主要特征,防止过拟合 ,全连接层将池化层输出的特征向量进行整合,输出最终的预测结果 ,在处理高维数据时具有独特优势。LSTM 是循环神经网络(RNN)的一种变体,通过引入遗忘门、输入门和输出门来控制信息的流动,能够有效地捕捉时间序列中的长期依赖关系,对于具有时间顺序的多变量数据,能够记住过去重要的信息并应用于当前的预测 。CNN - LSTM 模型则结合了两者的优点,先利用 CNN 对多变量时间序列数据进行特征提取,获取数据中的局部特征和空间特征 ,再将提取的特征输入到 LSTM 中,挖掘其中的时间依赖关系 ,在多变量回归预测中展现出更强大的性能。

此外,本文还将引入一种基于黑翅鸢优化算法(Black-winged kite algorithm,BKA)优化的 BKA - CNN - LSTM 模型。黑翅鸢算法模拟黑翅鸢 “盘旋搜索 - 俯冲锁定 - 精准抓捕” 的捕猎行为设计寻优步骤,在解空间内具有优异的全局寻优能力。它针对 CNN - LSTM 的关键超参数进行优化,以模型在验证集上的均方根误差(RMSE)为适应度函数,通过迭代搜索找到使预测精度最高的超参数组合,提升模型对多变量数据的特征提取与时序建模能力。

接下来,本文将详细介绍 CNN、LSTM、CNN - LSTM 以及 BKA - CNN - LSTM 这四个模型的原理、构建过程,并通过实际案例对比分析它们在多变量回归预测任务中的性能表现,探究不同模型的优势与不足,为相关领域的预测工作提供有价值的参考。

二)CNN 模型

卷积神经网络(Convolutional Neural Network,CNN)是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型 ,通过卷积层、池化层和全连接层等组件,自动提取数据的特征,在图像识别、目标检测、语义分割等计算机视觉任务中取得了卓越的成果 。

卷积层是 CNN 的核心组件,其主要功能是通过卷积操作提取数据的局部特征 。卷积操作通过卷积核(Filter/Kernel)在输入数据上滑动,每次仅与局部区域进行加权求和,模拟生物视觉的局部感知机制 。如果输入数据为一张灰度图,那么卷积核为二维张量(如 3×3),对应计算输入图像的值;如果输入数据为一张 RGB 图像(3 通道),则卷积核通常为三维张量(如 3×3×3),对应计算输入图像的多通道值 。同一个卷积核在滑动过程中参数(权重)保持不变,例如,一个输入图像用 3×3 的卷积核提取特征,只需学习 9 个参数,大幅减少模型参数量 。卷积运算的结果称为特征映射,每个特征映射对应输入数据的一种特征(如边缘、纹理、颜色等) 。该层操作有卷积核大小、步长(Stride)、填充(Padding)等关键参数 。卷积核大小常见有 3×3、5×5 等;步长(Stride)是卷积核滑动的间隔,步长为 1 时逐像素滑动,步长为 2 时每隔一个像素滑动;填充(Padding)是指在输入数据边缘补零,保持特征图尺寸(如 “Same Padding” 使输出尺寸与输入相同)或控制尺寸缩小比例 。通过叠加多个卷积核,可提取多维度特征 。该层的输出通常叫做特征图(feature map) 。在图像识别中,卷积层可以通过不同的卷积核提取图像中的边缘、角点、纹理等低级特征 。一个 3×3 的卷积核可以检测图像中的水平和垂直边缘,通过调整卷积核的权重,可以学习到不同方向和尺度的边缘特征 。

池化层(Pooling Layer)通常紧跟在卷积层之后,主要实现两个关键目标:空间维度缩减(降采样)和增强特征鲁棒性 。空间维度缩减通过聚合局部区域特征(如取最大值或平均值),缩小特征图尺寸,减少计算量 。常见的池化方法有最大池化(Max Pooling)和平均池化(Average Pooling) 。最大池化选择池化窗口中的最大值作为输出,平均池化则选择池化窗口中的平均值作为输出 。池化操作还能增强特征鲁棒性,使学习到的特征对微小的平移、旋转和形变具有更强的鲁棒性,同时保留最重要的信息 。在图像识别中,池化层可以对卷积层提取的特征图进行降采样,减少数据量,同时保留图像的主要特征 。使用 2×2 的最大池化窗口,可以将特征图的尺寸缩小一半,同时保留图像中最显著的特征 。

全连接层(Fully Connected Layer)位于 CNN 的末端,负责根据前面层提取的高级特征进行最终的分类或回归预测 。在进入全连接层之前,来自前面卷积层和池化层的多维特征图(通常是一个三维张量:宽度 x 高度 x 通道数)会被展平成一个一维长向量 。例如,一个 3x3x64 的特征图会被展平为一个包含 3364 = 576 个元素的向量 。展平后的向量会输入到一个或多个隐藏的全连接层中,这些层中的每个神经元都与前一层的所有神经元相连,能够学习输入特征之间的复杂组合和非线性关系 。激活函数(如 ReLU 或 Sigmoid)通常应用于这些层的输出 。最后一个全连接层作为输出层,其结构取决于具体任务:对于分类任务,通常使用 Softmax 激活函数,神经元数量等于目标类别数,每个神经元的输出代表输入属于对应类别的概率;对于回归任务,通常使用线性激活函数,输出一个或多个连续值预测结果 。在图像分类任务中,全连接层可以将卷积层和池化层提取的特征进行整合,通过 Softmax 函数输出图像属于各个类别的概率,从而实现图像的分类 。

CNN 的优势在于其参数效率高,权值共享和局部连接减少了参数量,使其适合处理高维数据(如图像) ;能够自动提取特征,无需人工设计特征,通过端到端的学习从原始数据中学习到有效的特征表示 。

(三)CNN-LSTM 模型

CNN - LSTM 模型巧妙地融合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的优势,旨在更有效地处理既具有空间特征又具有时间序列特征的数据 。在许多实际应用中,数据往往同时包含这两种特性,交通流量数据不仅在空间上存在不同路段的分布差异,在时间上也呈现出随时间变化的规律 ;视频数据中每一帧图像具有空间特征,而帧与帧之间又存在时间序列关系 。

CNN 在处理空间特征数据方面具有独特的优势 。它的卷积层通过卷积核在输入数据上滑动进行卷积操作,能够自动提取数据中的局部特征,对于图像中的边缘、纹理、形状等空间特征具有很强的提取能力 。池化层则可以降低数据维度,减少计算量,同时保留主要特征,防止过拟合 。在处理图像数据时,CNN 可以通过多层卷积和池化操作,从低级的边缘、纹理特征逐渐提取到高级的语义特征,从而实现对图像内容的准确理解和分类 。

LSTM 则擅长处理时间序列数据,能够有效地捕捉时间序列中的长期依赖关系 。它通过引入遗忘门、输入门和输出门来控制信息的流动,使得模型能够记住过去重要的信息并应用于当前的预测 。在处理时间序列数据时,LSTM 可以根据历史数据的变化趋势,准确地预测未来的值 。在股票价格预测中,LSTM 可以分析历史股价数据中的复杂模式,考虑到股价在不同时间的波动情况,预测未来股价的走势 。

CNN - LSTM 模型结合了两者的优点,先利用 CNN 对多变量时间序列数据进行特征提取,获取数据中的局部特征和空间特征 。将交通流量数据看作是具有空间和时间维度的图像,CNN 可以提取不同路段的交通流量分布特征以及交通流量随时间变化的局部模式 。然后,将 CNN 提取的特征输入到 LSTM 中,LSTM 进一步挖掘这些特征中的时间依赖关系,从而实现对未来交通流量的准确预测 。在视频分析中,CNN - LSTM 模型可以先用 CNN 对视频的每一帧图像进行特征提取,得到图像中的物体、场景等空间特征,再将这些特征序列输入到 LSTM 中,分析帧与帧之间的时间序列关系,实现对视频中动作、事件的识别和预测 。

这种融合模型在多变量回归预测中展现出更强大的性能,能够充分利用数据中的空间和时间信息,提高预测的准确性和可靠性 。

(四)BKA-CNN-LSTM 模型

1. 黑翅鸢优化算法(BKA)原理

黑翅鸢优化算法(Black-winged kite algorithm,BKA)是一种基于黑翅鸢捕猎行为的新型元启发式优化算法 。黑翅鸢在自然界中以其独特的捕猎方式而闻名,它们通常会在高空盘旋搜索猎物,一旦发现目标,便会迅速俯冲锁定目标,最后精准抓捕 。BKA 正是模拟了黑翅鸢的这种捕猎行为,将其转化为数学模型,用于解决优化问题 。

在 BKA 中,首先进行种群初始化,生成一组随机分布的候选解,这些候选解代表了黑翅鸢在搜索空间中的初始位置 。在搜索策略上,算法模仿黑翅鸢的飞行路径及其捕猎决策过程 。在初始阶段,黑翅鸢(候选解)在较大的搜索空间内进行全局搜索,就像在高空盘旋寻找猎物一样,通过不断调整位置,探索解空间的各个区域,以寻找潜在的更优解 。随着搜索的进行,当某个候选解接近较优解时,算法会模拟黑翅鸢俯冲锁定目标的行为,缩小搜索范围,进行局部搜索,深入挖掘该区域,以进一步优化解 。在每次迭代中,算法依据特定的数学模型动态调节个体的位置向量 。这个数学模型通常涉及到当前解与全局最优解之间的距离、搜索的迭代次数等因素 。通过调整这些因素,算法确保既能充分探索未知区域,寻找新的潜在更优解,又能深入挖掘已知优质区域,对当前较优解进行优化 。

BKA 的核心在于通过对黑翅鸢捕猎行为的模拟,实现了在解空间内的高效搜索 。它能够在全局搜索和局部搜索之间进行平衡,避免陷入局部最优解,从而找到更优甚至全局最优解 。与其他元启发式算法相比,BKA 具有简单易用、参数较少以及强大的全局搜索能力等优点 。它在处理复杂优化问题时,能够有效地探索解空间,找到满足各种约束条件的最优解 。在无人机路径规划中,BKA 可以根据地图信息、障碍物分布等约束条件,为无人机规划出一条从起点到终点的最优路径,确保无人机在飞行过程中能够避开障碍物,同时最小化飞行距离和时间 。

2. BKA 对 CNN-LSTM 的优化过程

BKA 对 CNN - LSTM 模型的优化主要体现在对其超参数的优化上 。超参数是在模型训练之前需要手动设置的参数,它们对模型的性能有着重要的影响 。在 CNN - LSTM 模型中,超参数包括 CNN 的卷积核大小、卷积层数、池化方式和 LSTM 的隐藏层单元数、层数、学习率等 。不同的超参数组合会导致模型性能的巨大差异,因此寻找最优的超参数组合是提高模型性能的关键 。

BKA 以模型在验证集上的均方根误差(RMSE)为适应度函数 。RMSE 能够衡量模型预测值与真实值之间的偏差程度,RMSE 越小,说明模型的预测精度越高 。BKA 通过不断迭代搜索,调整 CNN - LSTM 模型的超参数 。在每次迭代中,BKA 根据当前的超参数组合计算模型在验证集上的 RMSE,然后根据 RMSE 的大小来判断当前超参数组合的优劣 。如果当前超参数组合对应的 RMSE 较小,说明该组合更优,BKA 会在该组合附近进行局部搜索,尝试进一步优化超参数;如果 RMSE 较大,BKA 会扩大搜索范围,在更大的解空间内寻找更优的超参数组合 。

通过这种方式,BKA 能够找到使 CNN - LSTM 模型预测精度最高的超参数组合 。优化后的 CNN - LSTM 模型在处理多变量数据时,能够更好地提取特征和建立时序模型 。更合适的卷积核大小和卷积层数可以使 CNN 更有效地提取数据中的空间特征,而优化后的 LSTM 隐藏层单元数和层数则能更好地捕捉时间序列中的长期依赖关系,从而提升模型的整体性能,使其在多变量回归预测任务中表现更加出色 。

⛳️ 运行结果

📣 部分代码

N=size(data,2);%列数

y=data(:,1);%输出值

x=data(:,2:N);%输入值

alpha = 2000; % moderate bandwidth constraint

tau = 0; % noise-tolerance (no strict fidelity enforcement)

K =8; % 10 modes

DC = 0; % no DC part imposed

init = 1; % initialize omegas uniformly

tol = 1e-7;

%--------------- Run actual VMD code

data2=[];

🔗 参考文献

[1]杨玉强,宋坤,罗焕芝.基于IBKA-ACNN-DD的短期土壤温度预测模型[J].农业机械学报, 2025(7).

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值