数字人解决方案——RAD-NeRF实现实时对话数字人环境配置与源码

前言 

1.这是一个能实时对话的虚拟数字人demo,使用的是NeRF(Neural Radiance Fields)训练方式可以看看我前面的博客。

2.文本转语音是用了VITS语音合成,项目git:https://github.com/jaywalnut310/vits .

3.语言模型是用了新开源的ChatGLM2-6B,当前的项目暂时没有加上这个接口。GitHub - THUDM/ChatGLM2-6B: ChatGLM2-6B: An Open Bilingual Chat LLM | 开源双语对话语言模型 )

4.声音克隆用的是PaddleSpeech,这个语音克隆训练起来很快,使用的数据集也相对少一些,当前的项目暂时没有加上语音克隆。

GitHub - PaddlePaddle/PaddleSpeech: Easy-to-use Speech Toolkit including Self-Supervised Learning model, SOTA/Streaming ASR with punctuation, Streaming TTS with text frontend, Speaker Verification System, End-to-End Speech Translation and Keyword Spotting. Won NAACL2022 Best Demo Award.Easy-to-use Speech Toolkit including Self-Supervised Learning model, SOTA/Streaming ASR with punctuation, Streaming TTS with text frontend, Speaker Verification System, End-to-End Speech Translation and Keyword Spotting. Won NAACL2022 Best Demo Award. - GitHub - PaddlePaddle/PaddleSpeech: Easy-to-use Speech Toolkit including Self-Supervised Learning model, SOTA/Streaming ASR with punctuation, Streaming TTS with text frontend, Speaker Verification System, End-to-End Speech Translation and Keyword Spotting. Won NAACL2022 Best Demo Award.icon-default.png?t=N7T8https://github.com/PaddlePaddle/PaddleSpeech

5.当现实现的效果:

实时对话数字人

语音合成

1.VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)是一种结合变分推理(variational inference)、标准化流(normalizing flows)和对抗训练的高表现力语音合成模型。VITS通过隐变量而非频谱串联起来语音合成中的声学模型和声码器,在隐变量上进行随机建模并利用随机时长预测器,提高了合成语音的多样性,输入同样的文本,能够合成不同声调和韵律的语音。

2.声学模型是声音合成系统的重要组成部分:

 它使用预先训练好的语音编码器 (vocoder声码器) 将文本转化为语音。

3.VITS 的工作流程如下:

  • 将文本输入 VITS 系统,系统会将文本转化为发音规则。
  • 将发音规则输入预先训练好的语音编码器 (vocoder),vocoder 会根据发音规则生成语音信号的特征表示。
  • 将语音信号的特征表示输入预先训练好的语音合成模型,语音合成模型会根据特征表示生成合成语音。
  • VITS 的优点是生成的语音质量较高,能够生成流畅的语音。但是,VITS 的缺点是需要大量的训练语料来训练 vocoder 和语音合成模型,同时需要较复杂的训练流程。

4.把项目git下来后,我们试试用VITS做个语

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知来者逆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值