视频目标语义分割自动标注——从图像轮廓提取到转成json标签文件

前言

语义分割数据标注是为训练语义分割模型准备数据的过程。语义分割是计算机视觉领域的任务,其中需要为图像中的每个像素分配一个类别标签,以区分不同的对象或区域。标注数据时,通常需要为每个对象或区域分配一个唯一的标签,并创建与图像像素相对应的分割掩码。掩码是二进制图像,其中像素值指示每个像素属于哪个类别。例如,对于背景、人、车辆等类别,分别创建不同的掩码。

手动标注工具:
图像标注软件:您可以使用专门的图像标注工具,如LabelImg、Labelbox、VGG Image Annotator (VIA)、CVAT等,来手动绘制区域并分配标签。
绘图工具:也可以使用一般绘图工具,如Adobe Photoshop或GIMP,手动绘制区域并创建掩码。

半自动标注工具:
GrabCut算法:这是一种基于交互式图像分割的方法,可以帮助快速生成分割掩码。
超像素分割工具:使用工具如SLIC或QuickShift可以生成超像素,然后手动分配标签给不同的超像素区域。

深度学习自动标注:
分割模型辅助标注:可以使用预训练的语义分割模型,如Mask R-CNN、U-Net等,来辅助标注。这些模型可以自动提供初始分割结果,然后可以进行必要的微调。

图像语义分割数据标注是一项费时费力的工作,特别是对视频中的目标进行语义分割标注时,要对视频进行拆帧之后对每一帧的里面所需要的目标进行标注,是一项繁琐又费时费力的工作。但随着Segment Anything与​Segment-and-Track Anything算法的出现,让分割标注任务不在那么麻烦,​Segment-and-Track Anything可以对视频里面的目标进行追踪之后,再分割,然后我们可以借助​Segment-and-Track Anything分割出来的mask自动生成标签文件。

一、​Segment-and-Track Anything目标追踪与目标分割

1.算法简介

Meta AI的SAM)模型展现了强大的图像分割能力,但在处理视频数据方面存在一些挑战。Segment-and-Track Anything是由SAM模型扩展而来,使其能够支持视频数据的分割和跟踪。这一创新使SAM不仅能够分割图像中的对象,还能够跟踪它们随时间的变化。这一功能的应用潜力广泛,涵盖了各种时空场景,包括但不限于街景、增强现实、细胞图像分析、动画制作和航拍视频。

在SAM-Track项目中,SAM模型在单卡上实现了强大的目标分割和跟踪能力。它具备处理大规模数据的潜力,能够同时追踪超过200个物体,为用户提供了卓越的视频编辑能力。
在这里插入图片描述

2.算法应用部署

算法应用与部署可以看我之前的博客 :​Segment-and-Track Anything——通用智能视频分割、目标追踪、编辑算法解读与源码部署

3.运动目标追踪与分割

首先对视频第一帧进行目标分割,然后使用Segment-and-Track Anything进行整个视频的目标追踪与分割。
在这里插入图片描述
分割之后的结果如下:
在这里插入图片描述

二、生成标签

1.语义分割标签格式

要生成语义分割的标签,要了解语义分割的json文件的格式,这里使用labelme标注json文件进行举例,标注的标签文件如下:

{
   
  "version": "0.2.4",
  "flags": {
   },
  "shapes": [
    {
   
      "label": "mat",
      "text": "",
      "points": [
        [
          234.0,
          248.0
        ],
        [
          229.0,
          246.0
        ],
        [
          207.0,
          247.0
        ]
      ],
      "group_id"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知来者逆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值