排序:
默认
按更新时间
按访问量

OpenCV4.0 Change Logs

https://github.com/opencv/opencv/wiki/ChangeLog OpenCV Change Logs version:4.0.0 4.0.0-alpha: September, 2018 4.0.0-beta: October, 2018 We are m...

2018-10-16 11:19:04

阅读数:107

评论数:0

深度学习与计算机视觉 看这一篇就够了(关于深度学习各层可视化的一片不错的文章)

人工智能是人类一个非常美好的梦想,跟星际漫游和长生不老一样。我们想制造出一种机器,使得它跟人一样具有一定的对外界事物感知能力,比如看见世界。 在上世纪50年代,数学家图灵提出判断机器是否具有人工智能的标准:图灵测试。即把机器放在一个房间,人类测试员在另一个房间,人跟机器聊天,测试员事先不知道另一...

2018-09-29 16:51:58

阅读数:97

评论数:0

【基于深度学习的细粒度分类笔记8】深度学习模型参数量(weights)计算,决定训练模型最终的大小

Draw_convnet 这幅图是通过开源的工具draw_convnet(https://github.com/gwding/draw_convnet)生成的。在清楚整个前向计算网络中的每一个层的输入输出以及参数设置后可以自己手动画出计算图出来,对于参数量计算就很直观了。 feature ...

2018-09-12 14:20:54

阅读数:96

评论数:0

【基于深度学习的细粒度分类笔记4】图像识别与检测挑战赛冠军方案出炉,基于偏旁部首识别 Duang 字

雷锋网(公众号:雷锋网) AI 科技评论按:随着互联网的飞速发展,图片成为信息传播的重要媒介,图片中的文本识别与检测技术也一度成为学界业界的研究热点,应用在诸如证件照识别、信息采集、书籍电子化等领域。 然而,一直以来存在的问题是,尚没有基于网络图片的、以中文为主的 OCR 数据集。基于这一痛点,...

2018-09-10 15:13:15

阅读数:61

评论数:0

【基于深度学习的细粒度分类笔记1】基于深度学习的细粒度物体分类综述

节选整理自:A Survey on Deep Learning-based Fine-grained Object Classification and Semantic Segmentation 细粒度分类综述 细粒度分类:同一类中不同子类物体间的分类。  难点:受视角、背景、遮挡等因素影响...

2018-09-10 10:47:35

阅读数:165

评论数:0

Darknet 源代码学习和非常详细的中文注释(绝对经典)

Darknet 源码学习 https://pjreddie.com/darknet/ 用于人脸表情端到端系统的重训练         附录1: darknet深度学习框架源码分析:详细中文注释,涵盖框架原理与实现语法分析 https://github.com/hgpvisio...

2018-07-26 09:15:43

阅读数:1320

评论数:0

YOLOv2和YOLOv3效果对比

安装完OpenCV,迫不及待的想要测试一下YOLO。   1.克隆项目 git clone https://github.com/pjreddie/darknet.git 2.进入项目目录,根据自己有无GPU和OpenCV来修改Makefile(默认使用CPU,无OpenCV) cd...

2018-07-25 17:12:53

阅读数:364

评论数:0

【Darknet】【yolo v2】训练自己数据集的一些心得----VOC格式(经典YOLO训练心得)

------【2017.11.2更新】------------SSD传送门---------- http://blog.csdn.net/renhanchi/article/details/78411095 http://blog.csdn.net/renhanchi/article/deta...

2018-07-25 17:11:36

阅读数:176

评论数:0

【YOLO学习】使用YOLO v2训练自己的数据 作者:hysteric314

说明 这篇文章是训练YOLO v2过程中的经验总结,我使用YOLO v2训练一组自己的数据,训练后的model,在阈值为.25的情况下,Recall值是95.54%,Precision 是97.27%。  需要注意的是,这一训练过程可能只对我自己的训练集有效,因为我是根据我这一训练集的特征来对Y...

2018-07-25 16:23:24

阅读数:78

评论数:0

Windows下 YOLOv3配置教程(YOLOv3项VS2013平台迁移的方法)

Summary: YOLOv3—Windows配置 Author: Amusi Date: 2018-04-05 YOLOv3翻译 yolo官网   目录 硬件环境 安装教程 下载darknet 修改darknet.vcxproj 修改darknet.sln 打开darkn...

2018-07-21 23:26:36

阅读数:756

评论数:0

YOLOv3: 训练自己的数据(绝对经典版本1)

windows版本:请参考:https://github.com/AlexeyAB/darknet linux       版本:请参考本文与 https://pjreddie.com/darknet/yolo 第一部分:论文与代码 第二部分:如何训练自己的数据 第三部分:疑惑解释 第四...

2018-07-20 19:22:10

阅读数:4912

评论数:2

使用SSD模型检测教学场景下的“举手”目标

由于项目需求,最近花了约三周的时间,尝试在我们自己的教学场景数据集上,完成SSD目标检测模型的测试,检测目标只有一个类别:举手(Handraising)。实际上,项目中已经存在可以完成举手目标检测的方案R-FCN,所以目的是为了验证SSD是否会有检测效果和检测速度的提升,这里简要记录一下整个流程,...

2018-07-18 16:47:30

阅读数:81

评论数:0

制作SSD目标检测模型需要的训练数据并训练SSD目标检测模型

1构建 数据集 先来看一下我们构建数据集合应该是什么样的,假设总数据为1000张。  为了方便,我们将数据放在/home/bingolwang/data 文件夹下。/home/bingolwang/data/VOCdevkit 这个目录下是VOC2007 VOC2007/ |-- Ann...

2018-07-17 23:56:30

阅读数:239

评论数:0

YOLO v3在Windows下的配置(无GPU)+opencv3.2.0+VS2015(已测试成功)

邮箱1:marsmarcin@sina.com 邮箱2:2156362475@qq.com 其实也是看不下去网上的一些博客在坑人,所以自己动手实现了一下,,本人的电脑属于比较老的版本,奔腾。。。 所有的都是参照官网上的说明做的。AlexeyAB/darknet这是链接。 0.准备工作就是你...

2018-07-17 20:33:38

阅读数:605

评论数:1

目标检测领域论文和代码集合(2013年~2018年8月)

转载链接:https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html Jump to... Papers R-CNN Fast R-CNN Faster R-CNN Light-Hea...

2018-07-17 09:12:15

阅读数:776

评论数:0

YOLOv3+Faster R-CNN+SSD训练和测试自己的数据

首先制作自己的数据集—VOC2007数据集制作,接下来就可以开始搞事情了....一:YOLOv3相关官网:YOLO: Real-Time Object Detection进化之路:YOLO v1,YOLO v2,YOLO9000算法总结与源码解析                 系统学习深度学习(...

2018-07-16 15:56:16

阅读数:831

评论数:0

基于caffe框架复现yolov3目标检测

网上有pytorch、tensorflow等框架实现的很多,但是使用caffe复现的几乎没有;或许是因为caffe框架逐渐没落了么?没办法,只要自己动手丰衣足食了!过程有点麻烦。。。。。。。。。。。。。。。。。补充说明一下复现平台:Jetson-TX2、Ubuntu16.04 LTS1 模型转换(...

2018-07-16 15:55:05

阅读数:581

评论数:2

目标检测综述【截至到2018年3月】

转自Ronald的知乎专栏:https://zhuanlan.zhihu.com/p/33277354,可以说是很全面了目前目标检测领域的深度学习方法主要分为两类:two stage的目标检测算法;one stage的目标检测算法。前者是先由算法生成一系列作为样本的候选框,再通过卷积神经网络进行样...

2018-07-15 23:35:05

阅读数:78

评论数:0

CVPR2018 目标检测(object detection)算法总览(关于2018年最新的目标检测文章分析)

CVPR2018上关于目标检测(object detection)的论文比去年要多很多,而且大部分都有亮点。从其中挑了几篇非常有意思的文章,特来分享,每篇文章都有详细的博客笔记,可以点击链接阅读。1、Cascaded RCNN 论文:Cascade R-CNN Delving into High ...

2018-07-15 23:31:59

阅读数:2501

评论数:3

DAC 2018目标检测系统挑战赛落幕:中科院清华分获GPU与FPGA冠军(解决小物体检测的问题)

本文由机器之心发布,作者:机器之心编辑部。2018 年 6 月 28 日,由电子自动化设计顶级会议 DAC' 2018 主办的「低功耗目标检测系统设计挑战赛」于加州旧金山于落下帷幕。来自中科院计算所的 ICT-CAS 团队和来自清华大学的 TGIIF 团队在全球 114 支参赛队伍中脱颖而出,分获...

2018-07-15 23:29:01

阅读数:177

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭