基于mediapipe的动作捕捉和Unity的球棍模型同步

基于mediapipe的动作捕捉和Unity的球棍模型同步

所需环境

这是我所使用的环境
python3.9 安装mediapipe和opencv-python包
python和Unity通信使用socket
Unity2021.3

python端

如何安装那两个包我就不说了,大家有不明白可以去百度
mediapipe和opencv-python

1.把我们要使用的mediapipe的功能封装成一个module
这个module返回一个列表,列表中存放mediapipe识别到的特征点

import cv2
import mediapipe as mp
import time


class poseDetector():
    def __init__(self, mode=False, upBody=False, smooth=True, detectionCon=0.5, trackCon=0.5):
        self.mode = mode
        self.upBody = upBody
        self.smooth = smooth
        self.detectionCon = detectionCon
        self.trackCon = trackCon

        self.mpDraw = mp.solutions.drawing_utils
        self.mpPose = mp.solutions.pose
        self.pose = self.mpPose.Pose(self.mode, self.upBody, self.smooth, False, True, # 这里的False 和True为默认
                                     self.detectionCon, self.trackCon)  # pose对象 1、是否检测静态图片,2、姿态模型的复杂度,3、结果看起来平滑(用于video有效),4、是否分割,5、减少抖动,6、检测阈值,7、跟踪阈值
        '''
        STATIC_IMAGE_MODE:如果设置为 false,该解决方案会将输入图像视为视频流。它将尝试在第一张图像中检测最突出的人,并在成功检测后进一步定位姿势地标。在随后的图像中,它只是简单地跟踪那些地标,而不会调用另一个检测,直到它失去跟踪,以减少计算和延迟。如果设置为 true,则人员检测会运行每个输入图像,非常适合处理一批静态的、可能不相关的图像。默认为false。
        MODEL_COMPLEXITY:姿势地标模型的复杂度:0、1 或 2。地标准确度和推理延迟通常随着模型复杂度的增加而增加。默认为 1。
        SMOOTH_LANDMARKS:如果设置为true,解决方案过滤不同的输入图像上的姿势地标以减少抖动,但如果static_image_mode也设置为true则忽略。默认为true。
        UPPER_BODY_ONLY:是要追踪33个地标的全部姿势地标还是只有25个上半身的姿势地标。
        ENABLE_SEGMENTATION:如果设置为 true,除了姿势地标之外,该解决方案还会生成分割掩码。默认为false。
        SMOOTH_SEGMENTATION:如果设置为true,解决方案过滤不同的输入图像上的分割掩码以减少抖动,但如果 enable_segmentation设置为false或者static_image_mode设置为true则忽略。默认为true。
        MIN_DETECTION_CONFIDENCE:来自人员检测模型的最小置信值 ([0.0, 1.0]),用于将检测视为成功。默认为 0.5。
        MIN_TRACKING_CONFIDENCE:来自地标跟踪模型的最小置信值 ([0.0, 1.0]),用于将被视为成功跟踪的姿势地标,否则将在下一个输入图像上自动调用人物检测。将其设置为更高的值可以提高解决方案的稳健性,但代价是更高的延迟。如果 static_image_mode 为 true,则忽略,人员检测在每个图像上运行。默认为 0.5。
        '''
    def findPose(self, img, draw=True):
        imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # 将BGR格式转换成灰度图片
        self.results = self.pose.process(imgRGB)  # 处理 RGB 图像并返回检测到的最突出人物的姿势特征点。
        if self.results.pose_landmarks:
            if draw:
                self.mpDraw.draw_landmarks(img, self.results.pose_landmarks, self.mpPose.POSE_CONNECTIONS)
                # results.pose_landmarks画点 mpPose.POSE_CONNECTIONS连线
        return img


    def findPosition(self, img, draw = True):
    #print(results.pose_landmarks)
        lmList = []
        if self.results.pose_landmarks:
            for id, lm in enumerate(self.results.pose_landmarks.landmark):  # enumerate()函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标
                h, w, c = img.shape  # 返回图片的(高,宽,位深)

                cx, cy, cz = int(lm.x * w), int(lm.y * h), int(lm.z * w)  # lm.x  lm.y是比例  乘上总长度就是像素点位置
                lmList.append([id, cx, cy, cz])
                if draw:
                    cv2.circle(img, (cx, cy), 5, (255, 0, 0), cv2.FILLED)  # 画蓝色圆圈
        return lmList


def main():
    # cap = cv2.VideoCapture(0)  # 调用电脑摄像头
    # cap = cv2.VideoCapture('video/2.mp4')  # 视频
    # cap = cv2.VideoCapture('video/3.png')
    cap = cv2.VideoCapture('video/ASOUL.mp4')
    pTime = 0

    detector = poseDetector()
    while True:
        success, img = cap.read()  # 第一个参数代表有没有读取到图片True/False 第二个参数frame表示截取到一帧的图片  读进来直接是BGR 格式数据格式
        img = detector.findPose(img)
        lmList = detector.findPosition(img)
        if len(lmList) != 0:
            print(lmList)  # print(lmList[n]) 可以打印第n个
        # 计算帧率
        cTime = time.time()
        fps = 1 / (cTime - pTime)
        pTime = cTime

        cv2.putText(img, str(int(fps)), (70, 50), cv2.FONT_HERSHEY_PLAIN, 3,
                    (255, 0, 0), 3)  # 图片上添加文字  参数:图片 要添加的文字 文字添加到图片上的位置 字体的类型 字体大小 字体颜色 字体粗细

        cv2.imshow("Image", img)  # 显示图片

        cv2.waitKey(3)  # 等待按键


if __name__ == "__main__":
    main()

2.把一帧图像的33个特征点的信息变成一个字符串,以 “,”隔开
通过socket构建一个客户端client,把包含特征点信息的字符串发送到unity的服务端


import cv2
import time
import PoseModule as pm
import socket

pTime = 0

def computeFPS():
    global  pTime
    cTime = time.time()
    fps = 1 / (cTime - pTime)
    pTime = cTime
    cv2.putText(img, str(int(fps)), (70, 50), cv2.FONT_HERSHEY_PLAIN, 3,
                (255, 0, 0), 3)  # 图片上添加文字  参数:图片 要添加的文字 文字添加到图片上的位置 字体的类型 字体大小 字体颜色 字体粗细


# cap = cv2.VideoCapture(0)  # 调用电脑摄像头
cap = cv2.VideoCapture('video/2.mp4')  # 视频


# 构建一个实例,去连接服务端的监听端口。
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect(('127.0.0.1', 1234))
#  msg=client.recv(1024)
#  print('New message from server: %s' % msg.decode('utf-8'))

detector = pm.poseDetector()
strdata = ""  # 定义字符串变量
while True:
    success, img = cap.read()  # 第一个参数代表有没有读取到图片True/False 第二个参数frame表示截取到一帧的图片  读进来直接是BGR 格式数据格式
    img = detector.findPose(img)
    lmList = detector.findPosition(img)
    # if len(lmList) != 0:
    #     print(lmList)
    if len(lmList) != 0:
        for data in lmList:
            print(data)  # print(lmList[n]) 可以打印第n个
            for i in range(1, 4):
                if i == 2:
                    strdata = strdata + str(img.shape[0] - data[i]) + ','
                else:
                    strdata = strdata + str(data[i]) + ','
        print(strdata)
        client.send(strdata.encode('utf-8'))
        strdata = ""

    computeFPS()  # 计算帧率
    cv2.imshow("Image", img)  # 显示图片

    cv2.waitKey(10)  # 等待按键

unity端

1.在场景中构建出人的球棍模型,不需要在意他们的位置,通过代码给他们赋值,场景中的层级结构如图
在这里插入图片描述

在这里插入图片描述
场景中33个红色的球表示特征点,绿色的线表示骨架
在这里插入图片描述
具体需要多少骨架可以自己决定,我没有弄头上的
2.通过socket创建一个服务端(server),接收python客户端传来的特征点坐标数据,赋值给unity场景中的特征点

using System;
using System.Collections;
using System.Collections.Generic;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;
using UnityEngine;



public class Server : MonoBehaviour
{
    //public GameObject leftshoulder;
    public GameObject[] Body;
    private static int myProt = 9999;   //端口  
    static Socket serverSocket;
    Thread myThread;
    string str;
    Dictionary<string, Thread> threadDic = new Dictionary<string, Thread>();//存储线程,程序结束后关闭线程
    private void Start()
    {
        //服务器IP地址  ,127.0.0.1 为本机IP地址
        IPAddress ip = IPAddress.Parse("127.0.0.1");
        //IPAddress ip = IPAddress.Any; //本机地址
        Debug.Log(ip.ToString());
        serverSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);

        IPEndPoint iPEndPoint = new IPEndPoint(ip, myProt);
        //serverSocket.Bind(new IPEndPoint(ip, myProt));  //绑定IP地址:端口  
        serverSocket.Bind(iPEndPoint);  //绑定IP地址:端口  
        serverSocket.Listen(10);    //最多10个连接请求  
                                    //Console.WriteLine("creat service {0} success",
                                    //    serverSocket.LocalEndPoint.ToString());

        myThread = new Thread(ListenClientConnect);
        myThread.Start();
        //Console.ReadLine();
        Debug.Log("服务器启动...........");
    }

    public void Update()
    {
        if (str != null)
        {
            Debug.Log(str);//接受的数据
            string[] points = str.Split(',');
            Debug.Log(points.Length);




            for (int i = 0; i <= 32; i++)
            {
                float x = float.Parse(points[0 + (i * 3)]) / 100;
                float y = float.Parse(points[1 + (i * 3)]) / 100;
                float z = float.Parse(points[2 + (i * 3)]) / 300;
                Body[i].transform.localPosition = new Vector3(x, y, z);
            }
        }

    }

    // 监听客户端是否连接  
    private void ListenClientConnect()
    {
        while (true)
        {
            Socket clientSocket = serverSocket.Accept(); //1.创建一个Socket 接收客户端发来的请求信息 没有消息时堵塞
            clientSocket.Send(Encoding.ASCII.GetBytes("Server Say Hello")); //2.向客户端发送 连接成功 消息
            Thread receiveThread = new Thread(ReceiveMessage); //3.为已经连接的客户端创建一个线程 此线程用来处理客户端发送的消息
            receiveThread.Start(clientSocket); //4.开启线程
            //添加到字典中
            string clientIp = ((IPEndPoint)clientSocket.RemoteEndPoint).Address.ToString();
            //Debug.Log( clientSocket.LocalEndPoint.ToString()); //获取ip:端口号
            if (!threadDic.ContainsKey(clientIp))
            {
                threadDic.Add(clientIp, receiveThread);
            }
        }
    }



    private byte[] result = new byte[1024]; //1.存入的byte值 最大数量1024
    //开启线程接收数据 (将Socket作为值传入)
    private void ReceiveMessage(object clientSocket)
    {
        Socket myClientSocket = (Socket)clientSocket; //2.转换传入的客户端Socket
        while (true)
        {
            try
            {
                //接收数据  
                int receiveNumber = myClientSocket.Receive(result); //3.将客户端得到的byte值写入
                //Debug.Log(receiveNumber);//子节数量
                if (receiveNumber > 0)
                {
                    str = Encoding.UTF8.GetString(result, 0, receiveNumber);//将接受的数据存到str变量中
                    // Debug.Log(str);

                }
                else
                {
                    Debug.Log("client: " + ((IPEndPoint)myClientSocket.RemoteEndPoint).Address.ToString() + "断开连接");
                    threadDic[((IPEndPoint)myClientSocket.RemoteEndPoint).Address.ToString()].Abort(); //清除线程
                }
            }
            catch (Exception ex)
            {
                //myClientSocket.Shutdown(SocketShutdown.Both); //出现错误 关闭Socket
                Debug.Log(" 错误信息" + ex); //打印错误信息
                break;
            }
        }
    }

    void OnApplicationQuit()
    {
        //结束线程必须关闭 否则下次开启会出现错误 (如果出现的话 只能重启unity了)
        myThread.Abort();

        //关闭开启的线程
        foreach (string item in threadDic.Keys)
        {
            Debug.Log(item);//de.Key对应于key/value键值对key
            //item.Value.GetType()
            threadDic[item].Abort();
        }
    }

}

3.让骨架连接对应的特征点

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class linecode : MonoBehaviour
{
    LineRenderer lineRenderer;
    public Transform oringin;
    public Transform destination;

    // Start is called before the first frame update
    void Start()
    {
        lineRenderer = GetComponent<LineRenderer>();
        lineRenderer.startWidth = 0.1f;
        lineRenderer.endWidth = 0.1f;


    }

    // Update is called once per frame
    void Update()
    {
        lineRenderer.SetPosition(0, oringin.position);
        lineRenderer.SetPosition(1, destination.position);
    }
}

具体场景中的脚本挂载情况可以下载工程查看

效果

在这里插入图片描述
在这里插入图片描述

资源下载:
链接:https://pan.baidu.com/s/1XBBWV1wCxyW0FyRTOtorkw?pwd=sbyq
提取码:sbyq
参考:https://www.youtube.com/watch?v=BtMs0ysTdkM

### 如何将 MediaPipe 插件中的关节点映射到 Unity 的人体骨骼结构 在 Unity 中使用 MediaPipe 进行人脸、手势或全身跟踪时,通常会获得一组由 MediaPipe 提供的关键点坐标。这些关键点可以表示人脸特征点、手指关节位置或身体部位的位置[^1]。为了将这些关键点数据应用到 Unity 的角色动画系统中,需要将其映射到 Unity 的骨架结构上。 #### 映射过程的核心概念 Unity 使用了一个名为 Avatar 的抽象层来定义角色的骨骼层次结构以及它们之间的关系。Avatar 将骨骼名称标准化为 Humanoid 类型或其他自定义类型,从而允许开发者轻松地控制角色的动作[^4]。因此,在将 MediaPipe 关键点映射到 Unity 骨骼之前,需理解以下几点: 1. **MediaPipe 输出的数据格式** MediaPipe 返回的是三维空间中的世界坐标系下的关键点集合。例如,对于全身追踪模式(PoseLandmark),它提供了诸如头部、肩膀、肘部等 33 个关键点及其对应的 (x, y, z) 坐标[^3]。 2. **Unity 动画系统的输入需求** Unity 的 Animation Rigging 或者 Mecanim 系统期望接收的是骨骼变换矩阵(Transforms),即每个骨骼的世界空间位置旋转信息。这意味着我们需要将 MediaPipe 的关键点转换成适合 Unity 动画系统的格式。 --- #### 实现步骤详解 以下是实现 MediaPipe 关节与 Unity 骨骼之间映射的具体方法: ##### 数据预处理 由于 MediaPipe Unity 对于坐标的定义可能有所不同(比如左手坐标系 vs 右手坐标系),所以在实际操作前应先调整 MediaPipe 的输出以匹配 Unity 的坐标体系。可以通过简单的线性代数运算完成这一任务: ```csharp // 转换坐标轴方向 Vector3 ConvertToUnitySpace(Vector3 mediaPipePoint) { return new Vector3(mediaPipePoint.x, -mediaPipePoint.z, mediaPipePoint.y); } ``` ##### 创建骨骼映射表 建立一个字典用于存储 MediaPipe 关键点索引与其对应 Unity 骨骼名称的关系。例如: ```csharp Dictionary<int, string> boneMapping = new Dictionary<int, string> { { 0, "Hips" }, // Pelvis { 11, "LeftUpperLeg" }, // Left Thigh { 12, "RightUpperLeg"}, // Right Thigh ... }; ``` 上述代码片段展示了部分常见的骨骼关联方式。 ##### 更新骨骼状态 遍历所有已知的关键点并更新目标 GameObject 上相应子对象的位置及朝向: ```csharp foreach(var kvp in boneMapping){ int mpIndex = kvp.Key; Transform targetBone = GetChildByName(gameObject.transform,kvp.Value); if(targetBone != null && landmarks.ContainsKey(mpIndex)){ var worldPos = landmarks[mpIndex]; targetBone.position = ConvertToUnitySpace(worldPos.ToVector3()); // 计算旋转逻辑省略... } } public static Transform GetChildByName(Transform parent,string name){ foreach(Transform child in parent){ if(child.name.Equals(name))return child; } return null; } ``` 注意这里仅设置了 `position` 属性;如果还需要同步旋转,则可以根据相邻骨节构建局部参考帧计算欧拉角。 --- ### 技术挑战与解决方案 尽管理论清晰明了,但在实践过程中仍可能存在一些难点,如下所示: - **精度不足问题** 如果发现最终呈现的效果不够精确,可能是因初始校准偏差引起。建议引入额外传感器辅助定位或者采用更复杂的算法优化估计值。 - **性能瓶颈考量** 当实时渲染大量复杂动作序列时可能会遇到效率低下情况。对此可考虑降低采样频率或是简化几何模型减少负载压力。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值