本来是用Dataparallel来微调,但是发现gpu0上负载太大了,后来上面一看,pytorch官网推荐使用DistributedDataParallel,这个方法可以用于多机多卡或者单机多卡,速度和各方面都比Dataparallel要好很多。
我主要看了下面两个博客:
【分布式训练】单机多卡的正确打开方式(三):PyTorch
pytorch(分布式)数据并行个人实践总结——DataParallel/DistributedDataParallel
这里说一下Dataparallel和DistributedDataparallel在使用时的区别。比如有三张卡(也就是3张gpu),Batch=30。
Dataparallel
只开一个进程,DistributedDataparallel
有几张卡开几个进程,不过需要在执行程序时手动设置。Dataparallel
返回的loss是3张卡的loss,所以需要mean一下,这样才是整个batch的loss,也就是Dataparallel
会自动将输入的一个batch的数据切分成3份,每张卡分别计算一部分,也就是10份。
而DistributedDataparallel
是不会自动切分数据的,所以在Dataloader中,需要将sampler设置为DistributedSampler
,具体见下面的代码。DistributedDataparallel
是将整个数据集切分为3份,然后每一个进程使用其中的一份,但是每个进程的batch还是30。- 在保存模型时,
Dataparallel和DistributedDataparallel
都需要使用model.module.state_dict
来保存模型,而不是model.state_dict
,不过DistributedDataparallel
还需要选择一个进程的模型保存,具体见代码。 - 执行
DistributedDataparallel
的程序是要用命令行执行,python -m torch.distributed.launch --nproc_per_node=3 main.py
, 其中 nproc_per_node指定了要用为每一张卡开一个进程。 Dataparallel
只开一个进程,默认是0号GPU为master,也就是模型会放在0号GPU上,然后其他GPU上是模型的浅拷贝,步骤2中得到的数据会分别送到每个GPU上独立并行的进行forward过程,然后主GPU会收集loss,loss平均后分发给每个GPU进行反向传播(但此时并不更新参数,仅仅是反向传播计算梯度),然后各GPU将梯度汇总到主GPU,进行梯度下降,并更新模型参数,然后将参数广播到其余GPU。可以看到,在上述过程中,主GPU做了很多事,所以在这种并行方式下,主GPU的显卡占用率要比其他gpu高很多。DistributedDataparallel
为每个GPU开一个进程,没有主GPU,每个GPU执行相同的任务,每个进程具有自己的 optimizer ,并独立完成所有的优化步骤,进程内与一般的训练无异。在各进程梯度计算完成之后,各进程需要将梯度进行汇总平均,然后再由 rank=0 的进程,将其 broadcast 到所有进程。之后,各进程用该梯度来独立的更新参数。相较于Dataparallel
,DistributedDataparallel
传输的数据量更少,因此速度更快,效率更高。
import random
import numpy as np
from transformers import AlbertTokenizer, AlbertForMaskedLM, AdamW, get_linear_schedule_with_warmup, \
DataCollatorForLanguageModeling
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import Dataset, DataLoader, RandomSampler
from torch.utils.data.distributed import DistributedSampler
import torch
import time
from utils import format_time
from utils import read_data
torch.distributed.init_process_group(backend='nccl')
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2', cache_dir='../language_model/albert')
model = AlbertForMaskedLM.from_pretrained('../language_model/albert')
seed_val = 42
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val