tf.nn.dynamic_rnn返回值详解

6 篇文章 0 订阅
5 篇文章 0 订阅
函数原型
tf.nn.dynamic_rnn(
    cell,
    inputs,
    sequence_length=None,
    initial_state=None,
    dtype=None,
    parallel_iterations=None,
    swap_memory=False,
    time_major=False,
    scope=None
)

参数讲解:

  • cell: RNNCell的一个实例.

  • inputs: RNN输入.

    • 如果time_major == False(默认), 则是一个shape为[batch_size, max_time, input_size]的Tensor,或者这些元素的嵌套元组。
    • 如果time_major == True,则是一个shape为[max_time, batch_size, input_size]的Tensor,或这些元素的嵌套元组。
  • sequence_length: (可选)大小为[batch_size],数据的类型是int32/int64向量。如果当前时间步的index超过该序列的实际长度时,则该时间步不进行计算,RNN的state复制上一个时间步的,同时该时间步的输出全部为零。

  • initial_state: (可选)RNN的初始state(状态)。如果cell.state_size(一层的RNNCell)是一个整数,那么它必须是一个具有适当类型和形状的张量[batch_size,cell.state_size]。如果cell.state_size是一个元组(多层的RNNCell,如MultiRNNCell),那么它应该是一个张量元组,每个元素的形状为[batch_size,s] for s in cell.state_size。

  • time_major: inputs 和outputs 张量的形状格式。如果为True,则这些张量都应该是(都会是)[max_time, batch_size, depth]。如果为false,则这些张量都应该是(都会是)[batch_size,max_time, depth]。time_major=true说明输入和输出tensor的第一维是max_time。否则为batch_size。

使用time_major =True更有效,因为它避免了RNN计算开始和结束时的转置.但是,大多数TensorFlow数据都是batch-major,因此默认情况下,此函数接受输入并以batch-major形式发出输出.

返回值:
一对(outputs, state),其中:

  • outputs: RNN输出Tensor.

    • 如果time_major == False(默认),这将是shape为[batch_size, max_time, cell.output_size]的Tensor.
    • 如果time_major == True,这将是shape为[max_time, batch_size, cell.output_size]的Tensor.
  • state: 最终的状态.

    • 一般情况下state的形状为 [batch_size, cell.output_size ]
    • 如果cell是LSTMCells,则state将是包含每个单元格的LSTMStateTuple的元组,state的形状为[2,batch_size, cell.output_size ]
实列讲解
import tensorflow as tf
import numpy as np
 
n_steps = 2
n_inputs = 3
n_neurons = 5     # 也就是hidden_size
 
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
 
seq_length = tf.placeholder(tf.int32, [None])
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32,
                                    sequence_length=seq_length)
 
init = tf.global_variables_initializer()
 
X_batch = np.array([
        # step 0     step 1
        [[0, 1, 2], [9, 8, 7]], # instance 1
        [[3, 4, 5], [0, 0, 0]], # instance 2 
        [[6, 7, 8], [6, 5, 4]], # instance 3
        [[9, 0, 1], [3, 2, 1]], # instance 4
    ])
seq_length_batch = np.array([2, 1, 2, 2])
 
with tf.Session() as sess:
    init.run()
    outputs_val, states_val = sess.run(
        [outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})
    print("outputs_val.shape:", outputs_val.shape, "states_val.shape:", states_val.shape)
    print("outputs_val:", outputs_val, "states_val:", states_val)

输出

outputs_val.shape: (4, 2, 5) states_val.shape: (4, 5)
outputs_val: 
[[[ 0.53073734 -0.61281306 -0.5437517   0.7320347  -0.6109526 ]
  [ 0.99996936  0.99990636 -0.9867181   0.99726075 -0.99999976]]
 
 [[ 0.9931584   0.5877845  -0.9100412   0.988892   -0.9982337 ]
  [ 0.          0.          0.          0.          0.        ]]
 
 [[ 0.99992317  0.96815354 -0.985101    0.9995968  -0.9999936 ]
  [ 0.99948144  0.9998127  -0.57493806  0.91015154 -0.99998355]]
 
 [[ 0.99999255  0.9998929   0.26732785  0.36024097 -0.99991137]
  [ 0.98875254  0.9922327   0.6505734   0.4732064  -0.9957567 ]]] 
states_val:
 [[ 0.99996936  0.99990636 -0.9867181   0.99726075 -0.99999976]
 [ 0.9931584   0.5877845  -0.9100412   0.988892   -0.9982337 ]
 [ 0.99948144  0.9998127  -0.57493806  0.91015154 -0.99998355]
 [ 0.98875254  0.9922327   0.6505734   0.4732064  -0.9957567 ]]

上面代码搭建的RNN网络如下图所示
在这里插入图片描述
上图中:椭圆表示tensor,矩形表示RNN cell。

首先tf.nn.dynamic_rnn()time_major是默认的false,故输入X应该是一个 [ b a t c h _ s i z e , s t e p , i n p u t _ s i z e ] = [ 4 , 2 , 3 ] [batch\_size,step,input\_size] = [4,2,3] [batch_sizestepinput_size]=[423]的tensor,注意我们这里调用的是BasicRNNCell,只有一层循环网络,outputs是最后一层每个step的输出,它的结构是 [ b a t c h _ s i z e , s t e p , n _ n e u r o n s ] = [ 4 , 2 , 5 ] [batch\_size,step,n\_neurons] = [4,2,5] [batch_sizestepn_neurons]=[425]states是每一层的最后那个step的输出,由于本例中,我们的循环网络只有一个隐藏层,所以它就代表这一层的最后那个step的输出,因此它和step的大小是没有关系的,我们的X有4个样本组成,隐层神经元个数为n_neurons是5,因此states的结构就是 [ b a t c h _ s i z e , n _ n e u r o n s ] = [ 4 , 5 ] [batch\_size,n\_neurons] = [4,5] [batch_sizen_neurons]=[45],最后我们观察数据,states的每条数据正好就是outputs的最后一个step的输出。

下面我们继续讲解多个隐藏层的情况,这里是三个隐藏层,注意我们这里仍然是调用BasicRNNCell

import tensorflow as tf
import numpy as np
 
n_steps = 2
n_inputs = 3
n_neurons = 5
n_layers = 3
 
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
seq_length = tf.placeholder(tf.int32, [None])
 
layers = [tf.contrib.rnn.BasicRNNCell(num_units=n_neurons,
                                      activation=tf.nn.relu)
          for layer in range(n_layers)]
multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)
outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32, sequence_length=seq_length)
 
init = tf.global_variables_initializer()
 
X_batch = np.array([
        # step 0     step 1
        [[0, 1, 2], [9, 8, 7]], # instance 1
        [[3, 4, 5], [0, 0, 0]], # instance 2 (padded with zero vectors)
        [[6, 7, 8], [6, 5, 4]], # instance 3
        [[9, 0, 1], [3, 2, 1]], # instance 4
    ])
 
seq_length_batch = np.array([2, 1, 2, 2])
 
with tf.Session() as sess:
    init.run()
    outputs_val, states_val = sess.run(
        [outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})
    print("outputs_val.shape:", outputs, "states_val.shape:", states)
    print("outputs_val:", outputs_val, "states_val:", states_val)

输出

outputs_val.shape: 
Tensor("rnn/transpose_1:0", shape=(?, 2, 5), dtype=float32) 
 
states_val.shape: 
(<tf.Tensor 'rnn/while/Exit_3:0' shape=(?, 5) dtype=float32>, 
 <tf.Tensor 'rnn/while/Exit_4:0' shape=(?, 5) dtype=float32>, 
 <tf.Tensor 'rnn/while/Exit_5:0' shape=(?, 5) dtype=float32>)
 
outputs_val:
 [[[0.         0.         0.         0.         0.        ]
  [0.         0.18740742 0.         0.2997518  0.        ]]
 
 [[0.         0.07222144 0.         0.11551574 0.        ]
  [0.         0.         0.         0.         0.        ]]
 
 [[0.         0.13463384 0.         0.21534224 0.        ]
  [0.03702604 0.18443246 0.         0.34539366 0.        ]]
 
 [[0.         0.54511094 0.         0.8718864  0.        ]
  [0.5382122  0.         0.04396425 0.4040263  0.        ]]] 
 
states_val:
 (array([[0.        , 0.83723307, 0.        , 0.        , 2.8518028 ],
       [0.        , 0.1996038 , 0.        , 0.        , 1.5456247 ],
       [0.        , 1.1372368 , 0.        , 0.        , 0.832613  ],
       [0.        , 0.7904129 , 2.4675028 , 0.        , 0.36980057]],
      dtype=float32), 
  array([[0.6524607 , 0.        , 0.        , 0.        , 0.        ],
       [0.25143963, 0.        , 0.        , 0.        , 0.        ],
       [0.5010576 , 0.        , 0.        , 0.        , 0.        ],
       [0.        , 0.3166597 , 0.4545995 , 0.        , 0.        ]],
      dtype=float32), 
  array([[0.        , 0.18740742, 0.        , 0.2997518 , 0.        ],
       [0.        , 0.07222144, 0.        , 0.11551574, 0.        ],
       [0.03702604, 0.18443246, 0.        , 0.34539366, 0.        ],
       [0.5382122 , 0.        , 0.04396425, 0.4040263 , 0.        ]],
      dtype=float32))

多层的RNN网络如下图所示
在这里插入图片描述
我们说过,outputs是最后一层的输出,即 [ b a t c h _ s i z e , s t e p , n _ n e u r o n s ] = [ 4 , 2 , 5 ] [batch\_size,step,n\_neurons] = [4,2,5] [batch_sizestepn_neurons]=[425]
states是每一层的最后一个step的输出,即三个结构为 [ b a t c h _ s i z e , n _ n e u r o n s ] = [ 4 , 5 ] [batch\_size,n\_neurons] = [4,5] [batch_sizen_neurons]=[45] 的tensor继续观察数据,states中的最后一个array,正好是outputs的最后那个step的输出。

下面我们继续讲当由BasicLSTMCell构造单元工厂的时候,只讲多层的情况,我们只需要将上面的 BasicRNNCell替换成BasicLSTMCell就行了,打印信息如下:

outputs_val.shape: 
Tensor("rnn/transpose_1:0", shape=(?, 2, 5), dtype=float32) 
 
states_val.shape:
(LSTMStateTuple(c=<tf.Tensor 'rnn/while/Exit_3:0' shape=(?, 5) dtype=float32>, 
                h=<tf.Tensor 'rnn/while/Exit_4:0' shape=(?, 5) dtype=float32>), 
LSTMStateTuple(c=<tf.Tensor 'rnn/while/Exit_5:0' shape=(?, 5) dtype=float32>, 
               h=<tf.Tensor 'rnn/while/Exit_6:0' shape=(?, 5) dtype=float32>), 
LSTMStateTuple(c=<tf.Tensor 'rnn/while/Exit_7:0' shape=(?, 5) dtype=float32>, 
               h=<tf.Tensor 'rnn/while/Exit_8:0' shape=(?, 5) dtype=float32>))
 
outputs_val: 
[[[1.2949290e-04 0.0000000e+00 2.7623639e-04 0.0000000e+00 0.0000000e+00]
  [9.4675866e-05 0.0000000e+00 2.0214770e-04 0.0000000e+00 0.0000000e+00]]
 
 [[4.3100454e-06 4.2123037e-07 1.4312843e-06 0.0000000e+00 0.0000000e+00]
  [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]
 
 [[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
  [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]
 
 [[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
  [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]] 
 
states_val: 
(LSTMStateTuple(
c=array([[0.        , 0.        , 0.04676079, 0.04284539, 0.        ],
       [0.        , 0.        , 0.0115245 , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ]],
      dtype=float32), 
h=array([[0.        , 0.        , 0.00035096, 0.04284406, 0.        ],
       [0.        , 0.        , 0.00142574, 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ]],
      dtype=float32)), 
LSTMStateTuple(
c=array([[0.0000000e+00, 1.0477135e-02, 4.9871090e-03, 8.2785974e-04,
        0.0000000e+00],
       [0.0000000e+00, 2.3306280e-04, 0.0000000e+00, 9.9445322e-05,
        5.9535629e-05],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00]], dtype=float32), 
h=array([[0.00000000e+00, 5.23016974e-03, 2.47756205e-03, 4.11730434e-04,
        0.00000000e+00],
       [0.00000000e+00, 1.16522635e-04, 0.00000000e+00, 4.97301044e-05,
        2.97713632e-05],
       [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00],
       [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00]], dtype=float32)), 
LSTMStateTuple(
c=array([[1.8937115e-04, 0.0000000e+00, 4.0442235e-04, 0.0000000e+00,
        0.0000000e+00],
       [8.6200516e-06, 8.4243663e-07, 2.8625946e-06, 0.0000000e+00,
        0.0000000e+00],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00]], dtype=float32), 
h=array([[9.4675866e-05, 0.0000000e+00, 2.0214770e-04, 0.0000000e+00,
        0.0000000e+00],
       [4.3100454e-06, 4.2123037e-07, 1.4312843e-06, 0.0000000e+00,
        0.0000000e+00],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00]], dtype=float32)))

LSTM的网络结构如下图:
在这里插入图片描述
一个LSTM cell有两个状态 C t C_{t} Ct h t h_{t} ht,而不是像一个RNN cell一样只有 h t h_{t} ht
关于LSTM的讲解可以看博客:LSTM理论知识讲解
在tensorflow中,将一个LSTM cell的 C t C_{t} Ct h t h_{t} ht合在一起,称为LSTMStateTuple
因此我们的states包含三个LSTMStateTuple,每一个LSTMStateTuple表示每一层的最后一个step的输出,这个输出有两个信息,一个是 h t h_{t} ht表示短期记忆信息,一个是 C t C_{t} Ct表示长期记忆信息。维度都是[batch_size,n_neurons] = [4,5],states的最后一个LSTMStateTuple中的 h t h_{t} ht就是outputs的最后一个step的输出

参考博客:https://blog.csdn.net/junjun150013652/article/details/81331448

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值