【代码实践】使用CLIP做一些多模态的事情

本文详细介绍了如何在Anaconda环境中安装CLIP,包括创建虚拟环境、安装依赖库以及解决可能遇到的网络问题。通过实例展示了CLIP模型在图像分类上的应用,识别出图像中的人物,并且在替换文本标签后,CLIP能准确识别出图像中的人物为艾斯。此外,还简单介绍了CLIP的可用模型和加载模型的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CLIP到底有多强,让我们来试试吧!

CLIP模型及代码地址:GitHub - openai/CLIP: Contrastive Language-Image Pretraining

一、准备环境

先创建一个anaconda虚拟环境,包含python=3.7版本,将该环境命名为clip。成功。

( pytorch=1.7.1 所需 python 版本 >=3.6,本博客决定安装 py3.7 )

conda create --name clip python=3.7
# 切换到虚拟环境clip中
conda activate clip

根据CLIP的github上指示,安装pytorch=1.7.1 及其他所需库。成功。

conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
pip install ftfy regex tqdm

最后,从github上直接安装CLIP。这一步可能会失败。

pip install git+https://github.com/openai/CLIP.git

如果无法访问github网址,会出现如下错误:

解决方法是从github镜像网站上拉取CLIP项目的完整zip包,将下载到的CLIP-main.zip文件保存在本地路径中,然后从本地直接安装CLIP库。

具体代码如下:

# 进入CLIP-main.zip所在路径
# 解压.zip文件,然后进入解压后的文件夹
unzip CLIP-main.zip
cd CLIP-main
# 运行setup.py文件,完成本地安装clip
python setup.py install

然后查看已安装的库,能找到clip就说明安装成功了,如下图所示:

二、测试CLIP

使用一个简单的图像分类代码测试clip是否能够正常运行,如下图是海贼王里面的人物艾斯,将该图片命名为Ace.jpeg。

运行下面的代码,希望模型能够识别出该图像是【一个人,一条狗,一只猫】中的哪一类:

import torch
import clip
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
# 加载预训练好的模型
model, preprocess = clip.load("ViT-B/32", device=device)

# 读取艾斯的图片和候选类别文字
image = preprocess(Image.open("Ace.jpeg")).unsqueeze(0).to(device)
text = clip.tokenize(["a man", "a dog", "a cat"]).to(device)

with torch.no_grad():
    # 计算每一张图像和每一个文本的相似度值
    logits_per_image, logits_per_text = model(image, text)

    # 对该image与每一个text的相似度值进行softmax
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)

首次运行,代码会加载openai已经训练好的ViT-B/32模型,如下图所示:

 等模型加载完毕,就会执行图像分类了,从结果可以看出,CLIP以0.928的概率判定该图像是一个man,而不是dog或者cat。


非常神奇的是,如果将代码的候选text选项中 “a man” 替换成艾斯的名字 “Ace”,让CLIP判断图像是否是Ace,结果甚至更好,CLIP以0.994的概率判定该图像是艾斯!

text = clip.tokenize(["Ace", "a dog", "a cat"]).to(device)

  

三、API介绍及使用

1. clip.available_models()

import torch
import clip
print(clip.available_models())

该方法输出CLIP的预训练好的图像编码器名称:

['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32', 'ViT-B/16', 'ViT-L/14']

2. clip.load()

该方法接受4个输入参数,得到2个输出结果。

参数:

  • name:字符串。用于指定CLIP使用的图像编码器模型。可以是模型名称,也就是clip.available_models()的输出结果;或者是这些模型所在的路径。
  • device:字符串或者torch.device的输出结果。用于指定加载模型的设备,gpu或者cpu。
  • jit:布尔值。是否加载优化的JIT模型。
  • download_root:字符串。用于指定下载的模型的保存地址,默认值如下代码所示。
model, proprecess = clip.load(name="RN50", device="cpu", jit=False, download_root="~/.cache/clip")

### 多模态技术提升CLIP模型效果的方法和技巧 为了有效提升CLIP模型的性能,可以通过多种多模态技术和实践经验来实现。以下是具体的策略: #### 1. **选择适合的图像和文本编码器** CLIP模型的核心在于其双塔架构设计——分别用于处理图像和文本输入的两个独立编码器。因此,在实际应用中应优先考虑选用高效的编码器组合,从而提高特征提取精度并进一步改善整体表现[^1]。 #### 2. **利用数据增强技术增加鲁棒性** 数据增强是一种被广泛验证有效的手段,它能够显著增强模型对于不同场景下样本变化的学习能力。具体到CLIP模型的应用当中,则可尝试诸如随机裁剪、颜色抖动以及水平翻转等多种操作形式,以此促进更广泛的视觉模式识别能力和更好的泛化特性。 #### 3. **引入高级融合机制加强跨模态交互** 高效的多模态信息整合方式至关重要。除了简单的拼接外,还可以探索更加复杂的方案比如自注意网络或者门控单元等结构的设计思路,它们有助于捕捉更为细致入微的相关关系,并最终达成理想中的协同效应目标。 #### 4. **精细调节超参数优化训练过程** 超参数设置直接影响着整个系统的收敛速度及其质量高低。针对CLIP这样的大型预训练框架而言,合理设定初始学习速率范围、批量尺寸规模以及其他关联配置项显得尤为重要。通过对上述要素不断试验迭代寻找最佳平衡点,进而达到预期改进成果的目的。 此外值得注意的是,OpenAI所推出的包含DALL·E与CLIP系列在内的多模态模型本身就具备相当可观的基础实力(约有120亿参数量级),这为其后续各类定制化改造奠定了坚实基础[^2]。 ```python import torch from clip import load as clip_load device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip_load("ViT-B/32", device=device) # Example of data augmentation with torchvision.transforms from torchvision import transforms augmentations = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), transforms.RandomHorizontalFlip(), ]) ``` 以上代码片段展示了加载CLIP模型的过程以及一些常见的图像增广方法实例。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值