深度学习实战:从模型构建到训练优化

125、在MNIST数据集上训练一个深度多层感知器(MLP),尝试达到超过98%的精确率。同时添加各种额外功能,如保存检查点,在训练中断时恢复最后一个检查点,添加摘要,使用TensorBoard绘制学习曲线等。

要完成此任务,可按以下步骤操作:

  1. 首先构建一个深度MLP模型,设置合适的隐藏层、激活函数和初始化方法等;
  2. 接着划分MNIST数据集为训练集和测试集;
  3. 然后在训练过程中添加保存检查点的功能,可使用TensorFlow的相关函数实现,同时添加摘要用于后续使用TensorBoard绘制学习曲线;
  4. 若训练中断,可恢复最后一个检查点继续训练;
  5. 最后在测试集上评估模型,调整超参数以尝试达到超过98%的精确率。

126、构建一个深度神经网络(DNN),该网络有五个隐藏层,每个隐藏层有100个神经元,使用He初始化方法和ELU激活函数。

可按以下步骤构建:

  1. 导入必要的深度学习库,如TensorFlow或PyTorch。
  2. 定义网络结构,创建五个各含100个神经元的隐藏层,使用He初始化权重,应用ELU激活函数。
  3. 定义输入层和输出层。
  4. 编译模型,指定损失函数、优化器等。
  5. 训练模型。

以TensorFlow为例,代码示例如下:

import tensorflow as tf
# 定义模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(100, activation='elu', kernel_initializer='he_normal', input_shape=(input_dim,)),
    tf.keras.layers.Dense(100, activation='elu', kernel_initializer='he_normal'),
    tf.keras.layers.Dense(100, activation='elu', kernel_initializer='he_normal'),
    tf.keras.layers.Dense(100, activation='elu', kernel_initializer='he_normal'),
    tf.keras.layers.Dense(100, activation='elu', kernel_initializer='he_normal'),
    tf.keras.layers.Dense(output_dim, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值