125、在MNIST数据集上训练一个深度多层感知器(MLP),尝试达到超过98%的精确率。同时添加各种额外功能,如保存检查点,在训练中断时恢复最后一个检查点,添加摘要,使用TensorBoard绘制学习曲线等。
要完成此任务,可按以下步骤操作:
- 首先构建一个深度MLP模型,设置合适的隐藏层、激活函数和初始化方法等;
- 接着划分MNIST数据集为训练集和测试集;
- 然后在训练过程中添加保存检查点的功能,可使用TensorFlow的相关函数实现,同时添加摘要用于后续使用TensorBoard绘制学习曲线;
- 若训练中断,可恢复最后一个检查点继续训练;
- 最后在测试集上评估模型,调整超参数以尝试达到超过98%的精确率。
126、构建一个深度神经网络(DNN),该网络有五个隐藏层,每个隐藏层有100个神经元,使用He初始化方法和ELU激活函数。
可按以下步骤构建:
- 导入必要的深度学习库,如TensorFlow或PyTorch。
- 定义网络结构,创建五个各含100个神经元的隐藏层,使用He初始化权重,应用ELU激活函数。
- 定义输入层和输出层。
- 编译模型,指定损失函数、优化器等。
- 训练模型。
以TensorFlow为例,代码示例如下:
import tensorflow as tf
# 定义模型
model = tf.keras.Sequential([
tf.keras.layers.Dense(100, activation='elu', kernel_initializer='he_normal', input_shape=(input_dim,)),
tf.keras.layers.Dense(100, activation='elu', kernel_initializer='he_normal'),
tf.keras.layers.Dense(100, activation='elu', kernel_initializer='he_normal'),
tf.keras.layers.Dense(100, activation='elu', kernel_initializer='he_normal'),
tf.keras.layers.Dense(100, activation='elu', kernel_initializer='he_normal'),
tf.keras.layers.Dense(output_dim, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
其中

最低0.47元/天 解锁文章
8万+

被折叠的 条评论
为什么被折叠?



