信号系统之傅里叶变换对

1 Delta 函数对

对于离散信号,delta 函数是一个简单的波形,并且具有同样简单的傅里叶变换对。图11-1a显示了时域中的delta函数,其频谱在(b)和©中。幅度是一个恒定值,而相位完全为零。这可以通过使用 expansion/compression 属性来理解。当时域被压缩直到它变成脉冲时,频域被扩展,直到它成为一个常数。

在这里插入图片描述

在(d)和(g)中,时域波形分别向右移动了4个和8个样本。时域波形的移动不会影响幅度,但会在相位上增加一个线性分量。此图中的相位信号尚未展开,因此仅从 -π 延伸到 π。另请注意,频域中的水平轴从 -0.5 到 0.5 运行。也就是说,它们显示频谱中的负频和正频。负频率是冗余信息,但它们通常包含在 DSP 图中。

图 11-2 显示的信息与图 11-1 相同,但频域为矩形形式。这里有两个教训可以吸取。首先,比较频域的极性表达和矩形表达。通常情况下,极性形式更容易理解;大小只不过是一个常数,而相位是一条直线。相比之下,实部和虚部是难以赋予意义的正弦振荡。

在这里插入图片描述

图 11-2 中第二个有趣的特征是 DFT 的对偶性。在传统观点中,DFT频域中的每个样本都对应于时域中的正弦曲线。时域中的每个样本都对应于频域中的正弦曲线。在这些图中包括负频率可以使对偶性属性更加对称。例如,图(d)、(e)和(f),表明在时域中,样本编号4处的脉冲导致频谱实部的余弦波有四个周期,而虚部的负正弦波也有四个周期。在频谱的实部中,样本编号四处的脉冲会导致时域中余弦波的四个周期。同样,在频谱的虚部中,样本编号4处的脉冲导致负正弦波被添加到时域波中的四个周期。

这可以用作计算 DFT 的另一种方法(除了将时域与正弦曲线相关联)。时域中的每个样本都会导致余弦波被添加到频域的实部,而负正弦波被添加到虚部。每个正弦波的振幅由时域样本的振幅给出。每个正弦波的频率由时域点的样本数提供。该算法包括:

  • (1)逐步执行每个时域样本
  • (2)计算对应于每个样本的正弦波和余弦波
  • (3)将所有贡献的正弦波相加

2 Sinc 函数

图 11-4 展示了一个常见的变换对:矩形脉冲和 sinc 函数。sinc 函数定义为:sinc(a)=sin(πa)/(πa),但经常看到模糊的陈述:“sinc 函数的一般形式是:sin(x)/x。换句话说,sinc 是一种正弦波,其振幅衰减为 1/x。在(a)中,矩形脉冲对称地以样本零为中心,使一半的脉冲在图的右侧,另一半在左侧。由于时域周期性,这在DFT中显示为单个脉冲。该信号的DFT如(b)和©所示,未缠绕的版本如(d)和(e)所示。

首先看一下未展开的光谱,(d)和(e)。未缠绕的幅度是一种振荡,其振幅随频率的增加而减小。相位由所有零组成,时域信号在样本数零附近对称。使用术语“展开幅度”来表示它可以同时具有正值和负值。根据定义,量级(magnitude)必须始终为正。这在(b)和©中显示,其中通过在所有频率上引入π的相移使幅度全部为正,其中(d)中未展开的幅度为负。

在(f)中,信号被移位,使其显示为一个连续的脉冲,但不再以样本编号零为中心。虽然这不会改变频域的幅度,但它确实在相位上增加了一个线性分量,使其变得一团糟。

包含单位幅度矩形脉冲 M 点宽的 N 点时域信号的 DFT 频谱由下式给出:

在这里插入图片描述

或者,DTFT可用于将频谱表示为采样率的分数:

在这里插入图片描述

换言之,方程 11-1 提供频谱中的 N/2+1 个样本,而方程 11-2 提供样本所在的连续曲线。这些方程仅提供大小。相位仅由时域波形的左右定位决定。

请注意,在图11-3b中,振荡的振幅在达到0.5的频率之前不会衰减到零。波形会持续到它被混叠的下一个周期。这会改变频域的形状,这种效应包含在方程11-1和11-2中。

在这里插入图片描述

了解不存在混叠时频谱的外观通常很重要。这是因为离散信号通常用于表示或建模连续信号,而连续信号不会混叠。删除方程中11-1 和 11-2的别名,将分母分别从 sin(πk/N)更改为 πk/N,将 sin(π)更改为 π。图 11-4 显示了这一点的重要性。数量 π 只能从 0 到 1.5708,因为 f 只能从 0 到 0.5。在这个范围内,sin(π)和 π 之间没有太大区别。在零频率下,它们具有相同的值,而在 0.5 的频率下,只有大约36%的差异。如果没有混叠,图11-3b中的曲线在图形右侧附近显示振幅略低,而在左侧附近没有变化。

当矩形脉冲的频谱没有混叠时(因为时域信号是连续的),它的一般形式是:sin(x)/x,即sinc函数。对于连续信号,矩形脉冲和 sinc 函数是傅里叶变换对。对于离散信号,这只是一个近似值,误差是由于混叠造成的。

sinc 函数在 x=0 时有一个烦人的问题,其中 sin(x)/x 变为零除以零。这不是一个困难的数学问题;当 x 变得非常小时,接近 x 的值(见图 11-4)。

在这里插入图片描述

这会将 sinc 函数转换为值为 1 的 x/x。换句话说,随着 x 变得越来越小,值接近 1,包括 sinc(0)=1。

sinc 函数的一个关键特征是过零的位置。这些发生在正弦波周期的整数均匀拟合到矩形脉冲中的频率上。例如,如果矩形脉冲的宽度为 20 个点,则频域中的第一个零点位于在 20 个点中形成一个完整周期的频率。第二个零是在 20 个点内进行两个完整周期的频率,依此类推。这可以通过记住如何通过相关性计算 DFT 来理解。频率分量的幅度是通过将时域信号乘以正弦波并将得到的样本相加来得出的。如果时域波形是单位振幅的矩形脉冲,则这与将矩形脉冲内的正弦波样本相加相同。如果此求和发生在正弦曲线周期的整数上,则结果将为零。

sinc 函数在 DSP 中被广泛使用,因为它是一个非常简单的波形(矩形脉冲)的傅里叶变换对。例如,sinc 函数用于光谱分析。考虑对无限长离散信号的分析。由于 DFT 只能处理有限长度的信号,因此选择了 N 个样本来表示较长的信号。这里的关键是“从较长的信号中选择N个样本”与将较长的信号乘以矩形脉冲相同。矩形脉冲中的样本保留相应的样本,而零则消除它们。这对信号的频谱有何影响?将时域乘以矩形脉冲会导致频域被卷积为 sinc 函数。这降低了频谱的分辨率。

3 其他变换对

图11-5(a)和(b)显示了上述的对偶性:频域中的矩形脉冲对应于时域中的sinc函数(加上混叠)。包括混叠效应在内,时域信号由下式给出:
在这里插入图片描述

为了消除这个方程中混叠的影响,想象一下,频域被精确采样,以至于它变成了一条连续的曲线。这使得时域无限长,没有周期性。DTFT是这里要使用的傅里叶变换,导致时域信号由关系式给出:

在这里插入图片描述

这个方程在DSP中非常重要,因为频域中的矩形脉冲是完美的低通滤波器。因此,该等式描述的 sinc 函数是完美低通滤波器的滤波器内核。这是一类非常有用的数字滤波器的基础,称为windowed-sinc滤波器。

在这里插入图片描述

图©和(d)显示,时域中的三角脉冲与频域中的sinc函数平方(加上混叠)重合。时域中的 2M - 1 点三角形可以通过将 M 点矩形脉冲与自身卷积来形成。由于时域中的卷积导致频域中的乘法,因此将波形与自身卷积将使频谱平方。

有没有一个波形是它自己的傅里叶变换?答案是肯定的,而且只有一个:高斯。图(e)显示了高斯曲线,(f)显示了相应的频谱,也是高斯曲线。仅当忽略别名时,此关系才成立。时域和频域的标准差之间的关系由下式给出:2πσ=1/σ。虽然(f)中仅显示了高斯曲线的一侧,但频谱中的负频率完成了整条曲线,对称中心为零频率。

图(g)显示了所谓的高斯爆发。它是通过将正弦波乘以高斯波形成的。例如,(g)是正弦波乘以(e)中所示的相同高斯波。相应的频域是以零频率以外的其他位置为中心的高斯频域。由于时域信号是两个信号的乘法,因此频域将是两个频谱的卷积。正弦波的频谱是以正弦波频率为中心的增量函数。高斯的频谱是以零频率为中心的高斯频谱。将两者卷积产生以正弦波频率为中心的高斯。

4 吉布斯效应

图 11-6 显示了从正弦曲线合成的时域信号。正在重建的信号显示在最后一张图(h)中。由于该信号的长度为 1024 个点,因此完全重建需要 513 个单独的频率。图(a)至(g)显示了仅使用其中一些频率时重建信号的样子。例如,(f)显示使用频率 0 到 100 的重建信号。该信号是通过信号(h)的 DFT,将频率 101 到 512 设置为零值,然后使用逆 DFT 找到生成的时域信号而创建的。

在这里插入图片描述

随着重建中频率的增加,信号越来越接近最终解。有趣的是,最终解是如何在信号的边缘处实现的。(h)中有三个锋利的边缘。两个是矩形脉冲的边缘。第三个是在样本编号 1023 和 0 之间,因为 DFT 将时域视为周期性的。当重建中仅使用部分频率时,每个边沿都会显示过冲和振铃(衰减振荡)。这种过调和振铃被称为吉布斯效应,以数学物理学家乔赛亚·吉布斯(Josiah Gibbs)的名字命名,他在1899年解释了这一现象。

仔细观察(e)、(f)和(g)中的过冲。随着添加更多的正弦曲线,过冲的宽度减小;然而,过调的幅度大致保持不变,约为9%。对于离散信号,这不是问题;当添加最后一个频率时,将消除过冲。然而,连续信号的重建不能那么容易解释。必须添加无限数量的正弦曲线才能合成连续信号。问题是,过冲的幅度不会随着正弦波的数量接近无穷大而减小,它保持大约相同的 9%。鉴于这种情况,有理由质疑连续正弦曲线的总和是否可以重建边。

解决这个难题的关键因素是,随着包含更多的正弦曲线,过冲的宽度会变小。超调仍然存在无限数量的正弦曲线,但它的宽度为零。恰好在不连续性处,重建信号的值收敛到阶跃的中点。正如 Gibbs 所展示的,求和收敛到信号,因为两者之间的误差能量为零。

在DSP中经常会遇到与吉布斯效应相关的问题。例如,低通滤波器是较高频率的截断,导致时域边缘的过冲和振铃。另一个常见的过程是截断时域信号的末端,以防止它们延伸到相邻周期。通过对偶性,这会扭曲频域中的边沿。

5 谐波

如果一个信号是周期性的,则组成该信号的唯一频率是 f 的整数倍,即 f、2f、3f、4f 等。这些频率称为谐波。一次谐波是f,二次谐波是2f,三次谐波是3f,依此类推。一次谐波(即 )也被赋予一个特殊名称,即基频,如图 11-7 所示:

  • 图(a)是纯正弦波
  • (b)是其DFT,即单个峰值
  • 在©中,正弦波因戳入峰值而失真
  • 图(d)显示了频域中这种失真的结果。由于失真信号是周期性的,频率与原始正弦波相同,因此频域由原始峰值加谐波组成。

在这里插入图片描述

谐波可以是任何幅度;但随着频率的增加,它们通常会变小。与任何信号一样,锋利的边缘会导致更高的频率。例如,考虑一个产生 1 kHz 方波的公共 TTL 逻辑门。边缘在几纳秒内上升,导致谐波产生近 100 MHz,即万分之一谐波!

图(e)显示了谐波分析的微妙之处。如果信号在水平轴上是对称的,即上瓣是下瓣的镜像,则所有偶次谐波的值都将为零。如(f)所示,信号中包含的唯一频率是基波、三次谐波、五次谐波等。

所有连续的周期信号都可以表示为谐波的总和,如上所述。离散的周期性信号存在一个问题,会破坏这种简单的关系。问题出在混叠上。图11-8a显示了一个正弦波,其失真方式与以前相同,通过戳入峰值的顶部。与上一个示例相比,该波形看起来不那么规则和平滑,因为正弦波的频率要高得多,因此每个周期的样本更少。图(b)显示了该信号的频谱。可以识别基波和谐波。此示例表明,谐波可以扩展到大于采样频率 0.5 的频率,并且将混叠到 0 到 0.5 之间的频率。图©显示了以对数刻度绘制的频谱,以显示这些低振幅混叠峰。这是许多谐波重叠的结果。

在这里插入图片描述

重要的是要了解,此示例涉及在以数字方式表示信号后对信号进行失真。如果这种失真发生在模拟信号中,则在数字化之前,应使用抗混叠滤波器消除有问题的谐波。只有当直接对离散信号执行非线性运算时,谐波混叠才是一个问题。即便如此,这些混叠谐波的幅度通常也足够低,可以忽略不计。

谐波的概念还有另一个原因:它解释了为什么DFT将时域和频域视为周期性的。在频域中,N 点 DFT 由 N/2+1 等距频率组成。可将这些样本之间的频率视为:(1)值为零,或(2)不存在。无论哪种方式,它们都无助于时域信号的合成。换句话说,离散频谱由谐波组成,而不是连续的频率范围。这要求时域是周期性的,其频率等于频域中的最低正弦波,即基频。忽略直流值,频域中表示的最低频率使每 N 个样本有一个完整的周期,导致时域是周期性的,周期为 N。换句话说,如果一个域是离散的,则另一个域必须是周期性的,反之亦然。这适用于傅里叶变换家族的所有四个成员。由于 DFT 将两个域视为离散域,因此它还必须将这两个域视为周期性域。每个域中的样本表示相反域周期性的谐波。

6 Chirp信号

Chirp信号是处理回波定位系统(如雷达和声纳)中实际问题的一种巧妙方法。图11-9显示了Chirp系统的频率响应。幅度的常数为 1,而相位是抛物线:

在这里插入图片描述
在这里插入图片描述

参数 α 在相位中引入了线性斜率,也就是说,它只是根据需要将脉冲响应向左或向右移动。参数beta控制相位的曲率。必须选择这两个参数,使频率 0.5 处的相位(即 k=N/2)是 2π 的倍数。请记住,每当直接操纵相位时,频率 0 和 0.5 都必须具有零相位(或 2π 的倍数,这是一回事)。

图 11-10 显示了进入啁啾系统的脉冲和离开系统的脉冲响应。脉冲响应是一种振荡突发,从低频开始,随着时间的推移变为高频。这被称为啁啾信号,原因很简单:当通过扬声器播放时,它听起来像鸟儿的啁啾声。

在这里插入图片描述

啁啾系统的主要特点是完全可逆的。如果通过反啁啾系统运行啁啾信号,则该信号将再次变成脉冲。这要求反啁啾系统具有 1 的量级(magnitude),并且与啁啾系统相反。如上所述。

通过对啁啾系统的脉冲响应进行左右翻转来发现反啁啾系统的脉冲响应。它有什么好处?考虑雷达系统的工作原理。从定向天线发射短时间的射频能量。飞机和其他物体将其中一些能量反射回位于发射器旁边的无线电接收器。由于无线电波以恒定速率传播,因此发射和接收信号之间的经过时间提供了到目标的距离。

这就提出了对脉冲的第一个要求:它需要尽可能短。例如,一个 1 微秒的脉冲提供大约 300 米长的无线电暴。这意味着通过系统获得的距离信息将具有大约相同长度的分辨率。如果想要更好的距离分辨率,需要更短的脉冲。

第二个要求是显而易见的:如果想探测更远的物体,脉冲需要更多的能量。不幸的是,更多的能量和更短的脉冲是相互冲突的要求。提供脉冲所需的电功率等于脉冲能量除以脉冲长度。需要更多的能量和更短的脉冲,这使得电力处理成为系统中的限制因素。无线电发射机的输出级只能处理如此多的功率而不会破坏自身。

啁啾信号提供了一种打破此限制的方法。在脉冲到达无线电发射器的最后阶段之前,它通过啁啾系统。使用啁啾信号而不是从目标飞机上反弹脉冲。在接收到啁啾回波后,信号通过反啁啾系统,将信号恢复为脉冲。这使得测量距离的系统部分可以看到短脉冲,而功率处理电路可以看到长持续时间的信号。这种类型的波形整形是现代雷达系统的基本组成部分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值