[2018 icpc徐州网络赛] Easy Math (杜教筛)

题意

∑ i = 1 m μ ( i n ) \sum_{i=1}^{m} \mu(in) i=1mμ(in)

m ≤ 2 × 1 0 9 , n ≤ 1 0 12 m \le 2×10^9,n\le 10^{12} m2×109,n1012

分析:

首先分析 n n n 的因子中有没有平方,如果有那么答案就是 0 0 0

如果 n n n 的因子没有平方,设某个因子为 p p p,原式就可以拆成

∑ i = 1 m μ ( i ⋅ n p ⋅ p ) \sum_{i=1} ^{m}\mu(i\cdot\frac{n}{p}\cdot p) i=1mμ(ipnp)

莫比乌斯函数是积性函数,考虑把 p p p 分出去,那么 p p p n p \dfrac{n}{p} pn 一定是互质的,但 i ⋅ n p i\cdot \dfrac{n}{p} ipn 并不一定互质,那么就考虑 i i i p p p 的关系,在 [ 1 , m ] [1,m] [1,m] 中只有 p p p 的倍数才与 p p p 不互质,所以要加上这一部分。

∑ i = 1 m μ ( i ⋅ n p ) μ ( p ) + ∑ i = 1 ⌊ m p ⌋ μ ( i ⋅ p ⋅ n p ) \sum_{i=1}^{m}\mu(i\cdot\frac{n}{p})\mu(p)+\sum_{i=1}^{\lfloor \frac{m}{p} \rfloor}\mu(i\cdot p \cdot \frac{n}{p}) i=1mμ(ipn)μ(p)+i=1pmμ(ippn)

由于 p p p 是单因子,所以 μ ( p ) = − 1 \mu(p)=-1 μ(p)=1

∑ i = 1 ⌊ m p ⌋ μ ( i n ) − ∑ i = 1 m μ ( i ⋅ n p ) \sum_{i=1}^{\lfloor \frac{m}{p} \rfloor}\mu(i n) - \sum_{i=1}^{m}\mu(i\cdot\frac{n}{p}) i=1pmμ(in)i=1mμ(ipn)

S ( n , m ) = ∑ i = 1 m μ ( i n ) S(n,m)=\sum\limits_{i=1}^{m}\mu(in) S(n,m)=i=1mμ(in),那么得到递推式

S ( n , m ) = S ( n , m p ) − S ( n p , m ) S(n,m)=S(n,\frac{m}{p})-S(\frac{n}{p},m) S(n,m)=S(n,pm)S(pn,m)

那么就可以每次枚举 n n n 的质因子 p p p,递归求解,那么递归边界就是 S ( 0 , n ) S(0,n) S(0,n) S ( 1 , m ) S(1,m) S(1,m),也就是莫比乌斯函数前缀和,用杜教筛处理一下就好了

代码:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 2e6 + 5;
int t, n, m, mobius[N], primes[N], cnt, sum[N];
bool st[N];
unordered_map<int, int> mp;
void get_mobius(int n) {
    mobius[1] = 1;
    for (int i = 2; i <= n; i ++) {
        if (!st[i]) {
            primes[cnt ++] = i;
            mobius[i] = -1;
        }
        for (int j = 0; primes[j] * i <= n; j ++) {
            int t = primes[j] * i;
            st[t] = 1;
            if (i % primes[j] == 0) {
                mobius[t] = 0;
                break;
            }
            mobius[t] = -mobius[i];
        }
    }
    for (int i = 1; i <= n; i ++) sum[i] = sum[i - 1] + mobius[i];
}
int Sum(int n) {
    if (n < N) return sum[n];
    if (mp[n]) return mp[n];
    int res = 1;
    for (int l = 2, r; l <= n; l = r + 1) {
        r = n / (n / l);
        res -= Sum(n / l) * (r - l + 1);
    }
    return mp[n] = res;
}
int S(int n, int m) {
    if (m == 0) return 0;
    if (n == 1) return Sum(m);
    int flag = 0;
    for (int i = 2; i * i <= n; i ++) {
        if (n % i == 0) {
            flag = 1;
            return S(n, m / i) - S(n / i, m);
        }
    }
    if (!flag) return S(n, m / n) - S(1, m);
}
signed main() {
    get_mobius(N - 1);
    cin >> m >> n;
    t = n;
    for (int i = 2; i * i <= t; i ++) {
        if (t % i == 0) {
            int cnt = 0;
            while (t % i == 0) {
                t /= i;
                cnt ++;
                if (cnt == 2) {
                    cout << 0 << endl;
                    return 0;
                }
            }
        }
    }
    cout << S(n, m) << endl;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值