[CQOI2015] 选数 (莫比乌斯反演 杜教筛)

题意

求从区间 [ L , R ] [L,R] [L,R] 选出 n n n 个数使得最大公约数为 k k k 的方案数,对 1 0 9 + 7 10^9 + 7 109+7 取模

1 ≤ n , k ≤ 1 0 9 1 \le n,k \le 10^9 1n,k109
1 ≤ L ≤ R ≤ 1 0 9 1 \le L \le R \le10^9 1LR109

分析:

根据题意

∑ a 1 = L R ∑ a 2 = L R ⋯ ∑ a n = L R [ gcd ⁡ ( a 1 , a 2 , ⋯   , a n ) = k ] \sum_{a_1=L}^{R}\sum_{a_2=L}^{R}\cdots\sum_{a_n=L}^{R}[\gcd(a_1,a_2,\cdots,a_n)=k] a1=LRa2=LRan=LR[gcd(a1,a2,,an)=k]

k k k 拿到上下界

∑ a 1 = ⌊ L − 1 k ⌋ + 1 ⌊ R k ⌋ ∑ a 2 = ⌊ L − 1 k ⌋ + 1 ⌊ R k ⌋ ⋯ ∑ a n = ⌊ L − 1 k ⌋ + 1 ⌊ R k ⌋ [ gcd ⁡ ( a 1 , a 2 , ⋯   , a n ) = 1 ] \sum_{a_1=\lfloor \frac{L-1}{k} \rfloor +1}^{\lfloor \frac{R}{k} \rfloor}\sum_{a_2=\lfloor \frac{L - 1}{k} \rfloor + 1}^{\lfloor \frac{R}{k} \rfloor}\cdots\sum_{a_n=\lfloor \frac{L - 1}{k} \rfloor + 1}^{\lfloor \frac{R}{k} \rfloor}[\gcd(a_1,a_2,\cdots,a_n)=1] a1=kL1+1kRa2=kL1+1kRan=kL1+1kR[gcd(a1,a2,,an)=1]

莫比乌斯反演

∑ a 1 = ⌊ L − 1 k ⌋ + 1 ⌊ R k ⌋ ∑ a 2 = ⌊ L − 1 k ⌋ + 1 ⌊ R k ⌋ ⋯ ∑ a n = ⌊ L − 1 k ⌋ + 1 ⌊ R k ⌋ ∑ d ∣ gcd ⁡ ( a 1 , a 2 , ⋯   , a n ) μ ( d ) \sum_{a_1=\lfloor \frac{L-1}{k} \rfloor +1}^{\lfloor \frac{R}{k} \rfloor}\sum_{a_2=\lfloor \frac{L-1}{k} \rfloor +1}^{\lfloor \frac{R}{k} \rfloor}\cdots\sum_{a_n=\lfloor \frac{L-1}{k} \rfloor +1}^{\lfloor \frac{R}{k} \rfloor}\sum_{d \mid \gcd(a_1,a_2,\cdots,a_n)} \mu(d) a1=kL1+1kRa2=kL1+1kRan=kL1+1kRdgcd(a1,a2,,an)μ(d)

交换求和次序

∑ d = 1 ⌊ R k ⌋ μ ( d ) ( ⌊ R k d ⌋ − ⌊ L − 1 k d ⌋ ) n \sum_{d=1}^{\lfloor \frac{R}{k} \rfloor}\mu(d) (\lfloor \frac{R}{kd}\rfloor - \lfloor \frac{L - 1}{kd}\rfloor)^n d=1kRμ(d)(kdRkdL1)n

然后用杜教筛做

代码:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 2e6 + 5, mod = 1e9 + 7;
int n, k, L, R, primes[N], mobius[N], cnt, res, sum[N];
bool st[N];
unordered_map<int, int> mp;
int qmi(int a, int b) {
    int res = 1;
    while (b) {
        if (b & 1) res = res * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}
void get_mobius(int n) {
    mobius[1] = 1;
    for (int i = 2; i <= n; i ++) {
        if (!st[i]) {
            primes[cnt ++] = i;
            mobius[i] = -1;
        }
        for (int j = 0; primes[j] * i <= n; j ++) {
            int t = primes[j] * i;
            st[t] = 1;
            if (i % primes[j] == 0) {
                mobius[t] = 0;
                break;
            }
            mobius[t] = -mobius[i];
        }
    }
    for (int i = 1; i <= n; i ++) sum[i] = (sum[i - 1] + mobius[i] + mod) % mod;
}
int Sum(int n) {
    if (n < N) return sum[n];
    if (mp[n]) return mp[n];
    int res = 1;
    for (int l = 2, r; l <= n; l = r + 1) {
        r = n / (n / l);
        res = (res - Sum(n / l) * (r - l + 1) % mod + mod) % mod;
    }
    return mp[n] = res;
}
signed main() {
    get_mobius(N - 1);
    cin >> n >> k >> L >> R;
    L = (L - 1) / k, R /= k;
    for (int l = 1, r; l <= R; l = r + 1) {
        r = min(R / (R / l), L / l ? L / (L / l) : mod);
        res = (res + (Sum(r) - Sum(l - 1)) * qmi(R / l - L / l, n) % mod + mod) % mod;
    }
    cout << res << endl;
}
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值