【Python计量】内生性问题、工具变量法与二阶段最小二乘法2SLS

文章目录

  • 一、内生性问题与二阶段最小二乘法
  • 二、工具变量法的Python实现
    • (一)准备数据
    • (二)工具变量法
      • 1、采用statsmodels进行2SLS回归
      • 2、采用linearmodels进行2SLS回归
  • 三、工具变量相关检验
    • (一)变量内生性检验
    • (二)过度识别检测

我们以伍德里奇《计量经济学导论:现代方法》的”第15章 工具变量估计与两阶段最小二二乘法“的案例15.5为例,使用美国女性教育回报数据MORZ,学习工具变量法的Python实现。

变量:被解释变量log(wage)为工资的对数,解释变量educ为受正式教育年数,exper为工作经验。

构建模型如下:

l o g ( w a g e ) = β 0

Python中,2SLS是指工具变量(Instrumental Variable,IV)的一种实现方式。工具变量是一种解决内生性问题的方,通过引入工具变量来解决因果关系中的内生性问题。在回归的第一阶工具变量将自变量拆分成拟合值和扰动项相关的部分,然后在第二阶中,对去除了内生性部分的自变量进行回归,得到一致的估计。 在Python中,可以使用不同的库来实现2SLS回归,比如statsmodels和linearmodels。使用statsmodels库进行2SLS回归,可以通过构建工具变量模型来实现。首先,需要准备数据,可以使用pandas库读取数据并进行一些预处理,比如去除缺失值。然后,使用statsmodels的IV2SLS类来进行2SLS回归。 以下是一个使用statsmodels库进行2SLS回归的示例代码: import pandas as pd import statsmodels.api as sm # 准备数据 data = pd.read_csv('data.csv') # 假设数据保存在data.csv文件中 data = data.dropna() # 去除缺失值 # 定义自变量、因变量工具变量 endog = data['y'] exog = data[['x1', 'x2']] # 自变量 instruments = data['z'] # 工具变量 # 构建工具变量模型 model = sm.OLS(endog, exog) iv_model = model.fit(cov_type='unadjusted', instrument=instruments) # 输出结果 print(iv_model.summary()) 通过以上代码,可以得到2SLS回归的结果,并且可以通过summary方查看回归结果的统计信息。 注意,这只是一个示例,实际使用中需要根据具体情况进行调整和扩展。同时,还可以使用其他库如linearmodels来实现2SLS回归。希望这个例子可以帮助你理解Python中的2SLS回归实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值