文章目录
- 一、内生性问题与二阶段最小二乘法
- 二、工具变量法的Python实现
-
- (一)准备数据
- (二)工具变量法
-
- 1、采用statsmodels进行2SLS回归
- 2、采用linearmodels进行2SLS回归
- 三、工具变量相关检验
-
- (一)变量内生性检验
- (二)过度识别检测
我们以伍德里奇《计量经济学导论:现代方法》的”第15章 工具变量估计与两阶段最小二二乘法“的案例15.5为例,使用美国女性教育回报数据MORZ,学习工具变量法的Python实现。
变量:被解释变量log(wage)为工资的对数,解释变量educ为受正式教育年数,exper为工作经验。
构建模型如下:
l o g ( w a g e ) = β 0