时序分析专题2:OLS线性回归模型

目录

1. 模型介绍

2. 模型案例演示

2.1 一元线性回归

 2.2 多元线性回归 

1. 模型介绍

   线性回归是比较常见,也比较基础的时序分析模型。模型的公式如下:

2. 模型案例演示

2.1 一元线性回归

  首先,先构造出简单的模拟数据,并做出相应的散点图:

import random
import matplotlib.pyplot as plt

x = [x + 1 for x in range(100)]
y = [3 * a + random.uniform(0, 10) for a in x]

plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
plt.scatter(x,y)
plt.xlabel('x')
plt.ylabel('y')

plt.show()

   使用两种方式,第一种更偏向于图片结果,第二种更偏向于数据结果。

   图片结果使用 statsmodels模块,代码如下:

import statsmodels.api as sm
import pandas as pd
import random
import matplotlib.pyplot as plt

x = [x + 1 for x in range(100)]
y = [3 * a + random.uniform(0, 10) for a in x]
# 输出结果为图片
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
plt.scatter(x,y)
plt.xlabel('x')
plt.ylabel('y')

plt.show()
m = sm.add_constant(x)
model = sm.OLS(y, m).fit()
print(model.summary())

 得到的结果如下:

   R_squared表示的可决系数,代表模型整体的拟合效果,一般位于0.7以上说明模型具有较好的可信度。cofe代表模型参数的估计值,const表示常数即截距项的值;p值小于0.05表示参数估计显著,通过统计学上的检验。

  数据结果使用sklearn模块,代码如下:

from sklearn.linear_model import LinearRegression
import numpy as np
def get_result(data_x, data_y):
    '''
    获取线性回归的结果
    ----------
    data_x:ndarray, 自变量矩阵
    data_y:ndarray, 因变量矩阵
    Returns: DataFrame
    -------
    '''
    model = LinearRegression()
    new_model = model.fit(data_x, data_y)
    beta1 = new_model.coef_[0][0]
    alpha = new_model.intercept_[0]
    R = model.score(data_x, data_y)
    out_df = pd.DataFrame({'beta1': [round(beta1, 4)],
                           'alpha': [round(alpha, 4)], 'R^2': [round(R, 4)]})
    return out_df


# 需要将数据转换为矩阵
X = np.array(x).reshape(-1, 1)
Y = np.array(y).reshape(-1, 1)

res = get_result(X, Y)

 得到的结果为:

  可以看到,两重办法得到的结果是一致的;第一种适用于分析说明,第二种适用于批量处理。

 根据得到的结果比对和实际值之间的差异,作出对应的比对图:

import random
import matplotlib.pyplot as plt

x = [x + 1 for x in range(100)]
y = [3 * a + random.uniform(0, 10) for a in x]
y1 = [2.9962* a + 5.0122 for a in x]
# 输出结果为图片
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
plt.scatter(x,y,label = '实际值')
plt.plot(x,y1,label = '回归曲线')

plt.xlabel('x')
plt.ylabel('y')
plt.legend(loc='best')

plt.show()

 2.2 多元线性回归 

   多元线性回归只需要添加相应的变量即可,此处仅对图片版的结果进行演示。


import statsmodels.api as sm
import pandas as pd

import random

x1 = [x + 1 for x in range(100)]
x2 = [x ** 2-x for x in range(100)]
# 构建一个表格
df = pd.DataFrame({'x1': x1, 'x2': x2})
df['y'] = df['x1'] + 0.5 * df['x2'] + random.uniform(0, 1000)
m = sm.add_constant(df.loc[:, ['x1', 'x2']])
model = sm.OLS(df['y'], m).fit()
print(model.summary())

  结果如下:

 本期分享结束,有何问题随时交流。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值