目录
1. 引言
本研究提出一套集成多模态数据驱动的大模型技术方案,实现亚急性脊髓联合变性(SCD)从术前预测到术后康复的全流程闭环管理。方案包含算法实现细节、系统交互协议及硬件部署规范。
2. 技术框架设计
2.1 数据采集与预处理系统
流程图:
API定义:
# 数据采集服务API
class DataCollector:
def __init__(self):
self.emr_client = EMRClient(api_key="hosp_api_key")
self.device_stream = MQTTSubscriber(topic="scd/device_data")
def fetch_emr_data(self, patient_id):
"""获取结构化电子病历数据"""
raw_data = self.emr_client.get_record(patient_id)
return preprocess_emr(raw_data)
def stream_device_data(self):
"""实时接收可穿戴设备数据"""
for msg in self.device_stream.iter_messages():
yield parse_sensor_data(msg.payload)
2.2 大模型微调系统
算法伪代码:
# 基于LoRA的医疗大模型微调算法
def lora_finetune(base_model, train_data, alpha=32, r=8):
# 初始化LoRA适配器
lora_A = nn.Linear(base_model.config.hidden_size, r)
lora_B = nn.Linear(r, base_model.config.hidden_size)
# 冻结原始模型参数
for param in base_model.parameters():
param.requires_grad = False
optimizer = torch.optim.AdamW(
list(lora_A.parameters()) + list(lora_B.parameters()),
lr=2e-4
)
for epoch in range(10):
for batch in train_data:
inputs, labels = batch
outputs = base_model(inputs)
# 注入LoRA权重
down_proj = lora_A(outputs.last_hidden_state)
up_proj = lora_B(down_proj)
modified_output = outputs + up_proj * alpha
loss = F.cross_entropy(modified_output, labels)
loss.backward()
optimizer.step()
3. 术前预测与方案制定系统
3.1 风险分层模型
集成学习流程图: