定性分析的例子

某学生从家去学校,由于怕迟到,所以一开始就跑步,累了再走余下的路程,下图中的纵轴表示离学校的距离,横轴表示出发后的时间,则下面四个图中较符合学生走法的是(

)。



解析:根据题意可知:该函数在时间为0时的距离最大,因此图象的起点应在y轴上的一点开始,由于学生开始时是跑步到校,因此速度相对较快,图象下降的速度较快;累了改成走着到校,因此速度较慢,图象要比前一段下降的要慢一些,直至到校,即图象与x轴相交。故选(D)。

点评:本题依据学生行走函数的意义进行定性分析,这里主要是抓住两点:(1)距离d是先远后近;排除(A)(B),(2)速度是先快后慢,排斥(C)。


来自摆渡,如有版权问题及时告知

### Python 中的定性分析方法和库 #### 使用 Pandas 和 Scipy 进行初步探索 Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系数据、标记数据[^2]。由于 pandas 建造在 NumPy 的基础之上,在以 NumPy 为核心的应用中,pandas 易于使用,并且能与其他第三方科学计算支持库完美集成。 对于定性分析而言,通常会涉及到分类变量之间的关联度量以及类别分布的研究。Pandas 提供了多种功能来操作这些类型的变量,比如 `groupby` 函数可以帮助统计不同类别的频数;而 `crosstab` 则可用于创建交叉表,从而更方便地观察两个或多个分类特征间的相互作用。 ```python import pandas as pd # 创建样本 DataFrame data = {'Category': ['A', 'B', 'C', 'A', 'B'], 'Subcategory': ['X', 'Y', 'Z', 'W', 'V']} df = pd.DataFrame(data) # 计算 Category 和 Subcategory 的频率表格 frequency_table = pd.crosstab(df['Category'], df['Subcategory']) print(frequency_table) ``` #### 应用 SciPy 统计测试 SciPy 构建于 Numpy 上面,提供了一些专门针对统计数据的操作工具[^3]。特别是 scipy.stats 模块包含了大量用于假设检验和其他统计推断的功能。例如 Chi-Square Test 可用来检测两个分类变量之间是否存在显著的相关性: ```python from scipy import stats chi2, p_value, dof, expected = stats.chi2_contingency(frequency_table.values) if p_value < 0.05: result = "存在显著差异" else: result = "无显著差异" print(f"Chi-square test results: {result}, P-value={p_value}") ``` #### 对应分析 (Correspondence Analysis) 当面对多维分类数据时,可以考虑采用对应分析技术来进行降维可视化。这种方法特别适合展示大型稀疏矩阵中的模式。下面的例子展示了如何利用 sklearn.decomposition.CA 类完成这一过程[^4]: ```python from sklearn.preprocessing import StandardScaler from sklearn.decomposition import CA # 数据标准化预处理 scaler = StandardScaler() scaled_data = scaler.fit_transform(frequency_table.T) # 初始化并训练对应分析模型 ca_model = CA(n_components=2).fit(scaled_data) # 获取投影后的坐标点 coordinates = ca_model.transform(scaled_data) # 打印前几项的结果作为示例输出 for i in range(min(5, len(coordinates))): print(f"{list(frequency_table.columns)[i]} -> ({coordinates[i][0]}, {coordinates[i][1]})") ``` 以上就是一些常见的基于 Python 实现定性分析的方法和技术栈简介。通过上述手段,可以从不同的角度深入理解分类性质的数据特性及其潜在联系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值