运筹学 --- 线性规划

运筹学 — 线性规划

概述

  • 基本假设(线性)
    • 决策变量每增加一个单位,对目标函数的贡献是一样的
    • 可加性
    • 允许非整数
    • 所有参数均已知
  • 标准形式
    • 形式
      • maxZ = CX
      • AX = b
      • X >= 0
    • 约束条件
      • 目标函数为求最大值(如果是最小值,可以转换成最大值)
      • 约束条件均为等式方程
      • 变量 X 为非负
      • 常数 b 都大于等于零
  • 转化标准型
    • 注意点一:如果不等式为绝对值,需拆分成两个不等式
  • 线性规划的解
    • 概念
      • 可行解:满足线性规划模型约束条件的解
      • 最优解:使目标函数达到最大值的可行解
    • 解的四种情况
      • 有唯一最优解
      • 有多重解:有多组最优解
      • 有无界解:满足约束条件,但是找不到最优解
      • 无可行解
  • 可行角点(CPF)
    • 有可行解且有界
      • 必定会有CPF,且 至少一个最优解
      • 如果有一个最优解,必定是CPF
      • CPF中最好的,必定是最优解
      • 如果有多重最优解,至少有两个角点

单纯性法

  • 步骤
    • 构建初始单纯性表
    • 求检验数并判断
      • 所有检验数都满足 Q <= 0,得到最优解
        • 若所有非基变量的检验数均小于零,则为唯一最优解
        • 若存在非基变量的检验数为零,则为多重解
      • 若存在检验数Q > 0,且其对应的变量x的系数列向量P <= 0,则为无界解
    • 基变换
    • 重复 步骤二 和 步骤三
  • 大M法和两阶段法
    • 问题
      • 如果一开始的时候,无法找到初始基变量,可以人为的添加基变量
      • 但是加入约束变量之后,则认为的改变了约束条件
    • 算法
      • 大M法
        • 步骤
          • 构建初始单纯性表
          • 求检验数并判断
            • 所有检验数都满足 Q <= 0,且基变量中无人工变量,得到最优解
              • 若所有非基变量的检验数均小于零,则为唯一最优解
              • 若存在非基变量的检验数为零,则为多重解
            • 所有检验数都满足 Q <= 0,但基变量中含有非零的人工变量,则无可行解
            • 若存在检验数Q > 0,且其对应的变量x的系数列向量P <= 0,则为无界解
          • 基变换
          • 重复 步骤二 和 步骤三
      • 两阶段法
        • 步骤
          • 第一阶段:求人工变量之和的最小值
            • 如果第一阶段 目标函数最优解不等于零,说明原问题无可行解
          • 第二阶段
            • 步骤
              • 构建初始单纯性表
                • 初始解为第一阶段的解
              • 求检验数并判断
                • 所有检验数都满足 Q <= 0,得到最优解
                  • 若所有非基变量的检验数均小于零,则为唯一最优解
                  • 若存在非基变量的检验数为零,则为多重解
                • 若存在检验数Q > 0,且其对应的变量x的系数列向量P <= 0,则为无界解
              • 基变换
              • 重复 步骤二 和 步骤三

对偶理论

  • 问题描述
    • 原问题
      • maxZ = CX
      • AX <= b
      • X >= 0
    • 对偶问题
      • minZ’ = Yb
      • YA <= C
      • Y >= 0
  • 性质
    • 对称性
      • 对偶问题的对偶是原问题
    • 无界性
      • 若原问题(对偶问题)为无界解,则其对偶问题(原问题)无可行解
    • 弱对偶性
      • 若X是原问题(Max问题)的可行解,Y是对偶问题(Min问题)的可行解,则CX <= Yb
    • 最优性
      • 若X是原问题的可行解,Y是对偶问题的可行解,则CX = Yb,X、Y是最优解
    • 对偶定理
      • 若原问题有最优解,则对偶问题也有最优解,且目标函数值相等
    • 互补松弛性
      • 设X、Y分别是原问题和对偶问题的可行解,XS、YS分别是其松弛变量的可行解, - 则X、Y是最优解当且仅当X * YS = 0 和 Y * XS = 0
    • 求解问题
      • 原问题(Max)的检验数的相反数(乘负号)对应于对偶问题的一组基本解
      • 对偶问题的检验数对应于原问题的一组基本解
  • 对偶单纯形法的优点
    • 初始解可以是非可行解,当检验数都非正时(目标函数为最小值则检验数都非负), - 就可以进行基变换,不需要添加人工变量,可简化计算
    • 当变量多于约束条件时,用对偶单纯形法可减少计算工作量
    • 在灵敏度分析及求解整数规划的割平面法中,有时需要用对偶单纯形法
    • 一般很少单独使用

灵敏度分析

  • 问题
    • aij、bi、cj系数中有一个或几个变化时,原线性规划最优解会有什么变化
  • 思路
    • 把发生变化的系数经过一定的计算代入原最终表中,进行检查和分析
    • 四种情况
      • 第一种
        • 原问题:可行解
        • 对偶问题:可行解
        • 结论或继续计算的步骤:表中的解仍为最优解
      • 第二种
        • 原问题:可行解
        • 对偶问题:非可行解
        • 结论或继续计算的步骤:用单纯形法继续迭代求最优解
      • 第三种
        • 原问题:非可行解
        • 对偶问题:可行解
        • 结论或继续计算的步骤:用对偶单纯形法继续迭代求最优解
      • 第四种
        • 原问题:非可行解
        • 对偶问题:非可行解
        • 结论或继续计算的步骤:引入人工变量,编制新的单纯性表,求最优解
  • 价值系数C的灵敏度分析
    • Cj 发生变化,检验数Qj发生变化
      • Cj 对应非基变量,重新计算Cj 对应的检验数
      • Cj 对应基变量,重新计算所有非基变量检验数
  • 资源限量B的灵敏度分析
  • 技术系数A的灵敏度分析

运输问题

  • 产销平衡的运输问题
    • 表上作业法(本质上是单纯形法)
      • 步骤
        • 求初始基本可行解(最小元素法/伏格尔法)
        • 求检验数并判断(位势法)
        • 调整运量(闭回路法)
        • 重复步骤二、三,直到求得最优解
  • 产销不平衡的运输问题
    • 产大于销
      • 增加虚拟销地,单位运价为0
    • 销大于产
      • 增加虚拟产地,单位运价为0
    • 销量不确定

整数规划问题

  • 问题
    • 取数必须为整数
  • 方法
    • 图解法
    • 分支定界法
      • 步骤
        • 不断将线性规划问题B的可行域分为子区域,逐步缩小Z的上界和增加Z的下界,最终求得Z*
        • 上下界更新:问题B(线性规划问题)各分支最优目标函数中的最大值作为新的上界; 在已求出整数条件的解中的最大值作为新的下界
  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值