《无人平台SLAM技术研究进展_王常虹》笔记

一、引言

1.SLAM的相关概念最早由Cheeseman等 于1986年的IEEE机器人与自动化会议提出,旨在将基于估计理论的方法引入机器人的建图问题与定位问题中。

2.与传统的卫星导航、惯 性 导 航、路 标 导 航 等 定 位 方 式 相 比,SLAM的特点是其所有的算法都围绕传感器收集的环境信息展开。

二、SLAM算法简析

后端算法能够实现全局状态估计,是 SLAM 算法的核心。

(1)扩展卡尔曼滤波(Extended KlmanaFilter,EKF)等为代表的滤波法后端基于马尔可夫模型(下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关),利用临近帧数据对系统状态进行预测-更新,从而实现全局状态估计。早期SLAM后端多以滤波法为主。

  • 但滤波法往往使用临近帧数据,难以利用历史帧数据,这将更容易产生累积误差;
  • 系统的马尔可夫假设也使得在回环发生时,当前帧难以与历史帧进行数据关联;
  • 典型的滤波方法存在线性化误差,且随着时间的推移难以维护庞大的协方差矩阵。

(2)粒子滤波法后端基于蒙特卡罗方法(借助计算机程序可以生成大量均匀分布坐标点,然后统计出图形内的点数,通过它们占总点数的比例和坐标点生成范围的面积就可以求出图形面积),将系统状态的概率密度函数表示为采样点(粒子)的集合,并在状态后验分布中进行随机采样与均值统计,根据统计结果对概率密度函数进行近似。粒子滤波法在一些特定的SLAM算法中有着较好的效果

  • 但其需要用大量的样本数量才能很好地近似状态的概率密度,而大量的样本数量会造成算法的复杂度急剧增加;
  • 此外,对样本进行重采样的过程可能导致粒子退化从而影响估计结果。

(3)优化法后端构造了以误差为目标函数,以系统状态为函数变量的优化函数,求得使误差取得极小值时的最优解,即为系统状态的最优估计。典型的优化法后端将位姿与路标构成图的节点,并利用光束平差法(Bundle Adjustment,BA)等进行局部优化;同时,将局部优化得到的位姿关键帧作为位姿图的节点进行全局优化。

  • 优化法后端能够利用所有时刻的数据进行全状态估计,便于将回环检测加入优化框架,并且将局部估计与全局估计分离。
  • 优化法在保证精确性的同时兼顾了效率性,因此在长时间、大地图情景下优化法的效果明显优于其他方法。

故优化法尤其是图优化法逐渐成为SLAM的主流后端方法。

三、SLAM算法实现

1.激光雷达SLAM

激光雷达测量本机与环境边界的距 离从而形成一系列空间点,通过帧间点集的扫描匹配进行位姿推算,并建立环境的点云地图。激光雷达的距离测量较为准确、误差模型较为简单,加之 测量所得的点集能够直观地反映环境信息,所以激光SLAM是一种发展时间长且较为成熟的SLAM解决方案。

2.视觉SLAM

根据图像帧间运动推算原理的不同,视觉SLAM 主要分为特征法直接法

(1)特征法

特征法前端对图像中的点、边缘、区域等特征进行提取并将其作为路标,由特征构成的路标在相机运动过程中保持可追踪且全局位置不变。利用计算机视觉方法对帧间图像进行特征提取与匹配后,根据对极几何约束,通过最小化重投影误差(Reprojection Error)来推算帧间运动。

特征法SLAM往往采用具有可复验性、可区别性、鲁棒性与效 率 性 的 特 征 点,例 如 SURF、FAST、ORB等。Klein 等构造了帧间特征跟踪与全局优化建图的并行结构,并提出了基于 FAST 特征的PTAM。Mur-Artal等提出了基于ORB特征的前端与基于图优 化的后端、适用于单双目与RGB-D相机的ORB-SLAM2。

(2)直接法

直接法前端基于强度不变假设(Intensity Co-herence Asums ption),即同一个空间点投射到2幅连续临近图像中的像素点,图像强度近似不变(也叫灰度不变假设)。利用计算机视觉方法对帧间的局部或全部像素点 的光度误差(Photometric Erorr )进行计算,并将光度误差进行最小化估计,从 而 推 算 帧 间 运 动。

Engel等提出了基于单目相机、生成半稠密地图的 LSD-SLAM,和 基 于 RGB-D 相 机、生成稠密地图的RGB-DSLAM。Forster等提出的SVO结合了特征法与直接法,通过提取角点并对角点局部的光度误差进行最小化估计从而实现位姿跟踪,同时生成稀疏的环境地图。

3.视觉-惯性SLAM

基于激光雷达与传统视觉传感器的前端位姿推算频率很难进一步提高,而基于加速度计与陀螺的惯性位姿传感器(IMU)的数据采集频率很高,但具有明显的累计误差与漂移。

4.SLAM地图表示

(1)二维地图

二维地图分为几何地图(Geometric Map)、网格地图(Grid Map)与拓扑地图(Topological Map)。

  • 几何地图将环境描述 为稀疏的点、线等路标;
  • 网格地图将环境均等地划分为网格,并标记每个网格被占用的概率,从而区 分可通过区域与障碍物区域。
  • 几何地图与网格地图统称为度量地图(Metric Map),度量地图定量地描述了环境中物体间的位置关系。
  • 拓扑地图将环境表示为包含节点和边的图(Graph),其中节点表示环境中的地点,节点间的边表示地点间的联系。拓扑地图舍去了环境的度量信息,只保留了与任务相关的地点以及地点间的连通性。

(2)三维地图

三维度量地图分为稀疏稠密两种。稀疏地图一般对应特征法前端,以特征点等作为环境路标。稠密地图一般对应直接法前端与三维激光雷达前端,以点云描述环境,或者将点云聚类为边界、表面或三维物体。

四、SALM领域研究热点

1.新传感器

全 光 相 机 (Plenoptic Camera):区别于仅记录像素点光线强度的传统相机,全光相机可以记录光场,即光线的方向与强 度,所 以全光相机也被称为光场相机(Light-field Camera)。

动态视觉相机(Event-based Camera):受仿生学的启发,不记录场景而是记录场景的变化。区别于传统相机按固定帧率输出整幅图像,动态视觉相机在视场内的像素点光照强度发生变化时,输出对应像素点局部的光强变化情况。因此动态视觉相机的特点是低延时(低至1ms)、高帧率(更新率可达1MHz)、大动态范围(可达140d B,区别于普通相机60~70d B)等,在应用于SLAM方 面 具 有 很 大 的 潜 力。

2.基于深度学习

感觉很难结合

3.语义SLAM

传统的SLAM算法利用点、点云、线、面等低级特征(Low-level Faturee )作为环境路标,这将导致运动跟踪与回环检测在动态环境中误差变大甚至失效。语义SLAM 将环境中物体的图像、几何特征等聚类为语义标签(Semantic Lbela ),利用深度学习等方法对包含语义信息的环境物体进行识别、跟踪与建图。

语义建图的特点是将传统建图中对环境物体的静态-动态二元分类转变为墙壁、门窗、走廊、人、车等带有不同语义标签的多元分类,隶属于不同语义标签的环境物体具有不同的通过性、移动性等属性。这将有利于增强机器人探索动态环境的自主性与鲁棒性,有助于机器人执行查找特定 地点、搜寻特定物体等与语义相关的复杂任务。

4.多机SLAM

为了解决数据在多机间的通信、共享、分发与处理问题,多机SLAM的拓扑结构分为两类:

  • 中 心化结构,数个机器人分别对小区域建图,并将地图传输给主机进行拼接、优化等处理。
  • 去中心化结构,数个机器人共同建图,通过机间的局部数据交换,建立一致的 全局地图。

5.主动SLAM

传统的SLAM算法被动地利用接收到的数据进行机器人状态估计,而主动SLAM 将定位问题与路径规划问题结合,目的是通过控制机器人的运动从而降低状态估计中的不确定性。
 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值