【有啥问啥】DeepSeek 技术原理详解

DeepSeek

DeepSeek 技术原理详解

DeepSeek 是一款具有突破性技术的大型语言模型,其背后的技术原理涵盖了多个方面,以下是对其主要技术原理的详细介绍:

架构创新

多头潜在注意力机制(MLA)

DeepSeek 引入了多头潜在注意力机制(Multi-head Latent Attention, MLA),这是其架构中的关键创新之一。传统 Transformer 的注意力机制需要缓存完整的 Key-Value(KV)矩阵,导致长上下文场景下内存占用激增。而 MLA 通过低秩联合压缩机制,将 KV 矩阵压缩为低维潜在向量,显著减少内存占用。具体来说,其技术原理如下:

  • 低秩压缩:将输入向量通过低秩矩阵投影到潜在空间,再通过逆变换恢复原始维度。公式示例为: C o m p r e s s e d K V = W d o w n ⋅ X Compressed_KV = W_down · X Compressed<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有啥问啥

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值