创建模型
# 创建模型
model = LinearRegression()
# 将数据转化成DataFrame
x = pd.DataFrame({
'salary': salary})
x = x['salary'].values.reshape((
这篇博客展示了如何利用Python的LinearRegression模型创建和拟合一元线性回归模型。通过将数据转化为DataFrame,调整形状并拟合模型,作者得出回归方程并绘制了拟合曲线,强调了模型在预测犯罪率与工资关系中的应用。
创建模型
# 创建模型
model = LinearRegression()
# 将数据转化成DataFrame
x = pd.DataFrame({
'salary': salary})
x = x['salary'].values.reshape((
1027

被折叠的 条评论
为什么被折叠?