Dijkstra迪杰斯特拉算法及C++实现

Dijkstra迪杰斯特拉算法及C++实现

Dijkstra算法是典型的最短路径路由算法,用来计算一个节点到其他所有节点的最短路径。算法的基本思想和流程是:
1. 初始化出发点到其它各点的距离dist[]以及各点的前一个访问点pre[];
2. for(i=2…n)
{
找出dist[]中未访问过点中的最小值,记录为best;
以dist[best]为基准更新dist[];
更新pre[];
}
一个有向图
从1出发,第一次找到最小点2,更新dist[],然后找到最小点4,以此类推,以当前最小为最优(贪心算法),列出下表:

迭代次数sbestdist[2]dist[3]dist[4]dist[5]
1(初始化){1}-10max30100
2{1,2}2106030100
3{1,2,4}410503090
4{1,2,4,3}310503060
5{1,2,4,3,5}510503060

具体实现:

#include <iostream>
#include <vector>
const int maxdist = 9999;
using namespace std;
/*n是总的结点数,v是出发结点,dist是距离,pre前一个结点,d是结点间的权值*/
void Dijkstra(int n, int v, vector<int> &dist, vector<int> &pre, vector<vector<int>> &d)
{
    vector<bool> s(n+1);
    for (int i = 1; i <= n;i++)
    {
        dist[i] = d[v][i];
        if (dist[i] < maxdist)
            pre[i] = v;
        else
            pre[i] = 0;
    }
    dist[v] = 0;
    s[v] = true;
    for (int i = 2; i <= n;i++)//总的迭代次数
    {
        int best = v;
        int temp = maxdist;
        for (int j = 1; j <= n;j++)//找到最小的距离
        {
            if (!s[j]&&dist[j]<temp)
            {
                temp = dist[j];
                best = j;
            }
        }
        s[best] = true;
        for (int j = 1; j <= n;j++)//更新dist和pre
        {
            if (!s[j] && d[best][j] != maxdist)
            {
                int newdist = dist[best] + d[best][j];
                if (newdist<dist[j])
                {
                    dist[j] = newdist;
                    pre[j] = best;
                }
            }
        }       
    }
}

void printpath(vector<int> pre, int init, int fina)
{
    int temp=fina;
    vector<int> t;
    while (temp != init)
    {
        t.push_back(temp);
        temp = pre[fina];
        fina = temp;
    }
    cout << init << "->";
    for (int i = t.size(); i >1;i--)
    {
        cout << t[i-1] << "->";
    }
    cout << t[0];
    t.clear();
}
int main()
{
    int n, l;
    cout << "请输入结点数和线数:";
    cin >> n >> l;
    vector<vector<int>> d(n+1, vector<int>(n+1));
    for (int i = 1; i <= n;i++)
    {
        for (int j = 1; j <= n; j++)
            d[i][j] = maxdist;
    }
    int p, q, len;
    for (int i = 1; i <= l; ++i)
    {
        cin >> p >> q >> len;
        if (len < d[p][q])       // 有重边
        {
            d[p][q] = len;      // p指向q
            d[q][p] = len;      // q指向p,这样表示无向图
        }
    }
    vector<int> dist(n+1),pre(n+1);
    for (int i = 1; i <= n; ++i)
        dist[i] = maxdist;
    Dijkstra(n, 1, dist, pre, d);
    cout << "点1到点n的最短路径长度: " << dist[n] << endl;
    cout << "点1到点n的路径为: ";
    printpath(pre, 1, n);
    return 0;
}
贪心算法是一种常见的求解最短路径问题的方法,其中迪杰斯特拉算法是其中的一种实现方式。下面是迪杰斯特拉算法的具体步骤: 1. 创建一个大小为n的数组dist,用来记录源点到每个顶点的最短距离。初始化为无穷大,除了源点为0。 2. 创建一个大小为n的数组visited,记录每个顶点是否已经被访问过,初始值为false。 3. 在dist数组中找到未被访问过的距离最小的顶点v,并将visited[v]设置为true。 4. 对于顶点v的每个邻接点u,如果visited[u]为false,并且源点到u的距离比源点到v加上v到u的距离小,则更新dist[u]为这个更小的值。 5. 重复步骤3和步骤4,直到所有顶点都被访问过。 下面是迪杰斯特拉算法C++代码实现: ```c++ #include<iostream> #include<cstring> using namespace std; const int N = 1010; const int INF = 0x3f3f3f3f; int n,m,s,t; int g[N][N],dist[N]; bool visited[N]; void Dijkstra(int s){ memset(visited,false,sizeof(visited)); memset(dist,INF,sizeof(dist)); dist[s] = 0; for(int i=0;i<n;i++){ int v = -1; for(int j=0;j<n;j++){ if(!visited[j] && (v==-1 || dist[j]<dist[v])) v = j; } visited[v] = true; for(int u=0;u<n;u++){ if(!visited[u] && g[v][u]!=INF && dist[v]+g[v][u]<dist[u]){ dist[u] = dist[v]+g[v][u]; } } } } int main(){ cin>>n>>m>>s>>t; memset(g,INF,sizeof(g)); for(int i=0;i<m;i++){ int a,b,c; cin>>a>>b>>c; g[a][b] = g[b][a] = c; } Dijkstra(s); cout<<dist[t]<<endl; return 0; } ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值