机器学习练习题

本文包含几道机器学习的实战题目,涉及卷积层、池化层的计算,无监督学习方法辨识,以及神经网络算法在电影中的应用。同时,讨论了监狱人脸识别系统的分类问题,提出适合多分类任务的学习方法。
摘要由CSDN通过智能技术生成

从牛客网找来得题目,解析是题目下的高赞答案。

1.输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为:

答案:97.

解析:输出尺寸=(输入尺寸-filter尺寸+2*padding)/stride+1


2.下列属于无监督学习的是:

a.kmeans

b.svm

c.最大熵

d.crf

答案:A

解析:简单来说,基于已知类别的样本调整 分类 器 的参数,使其达到所要求性能的过程,称为监督学习;对没有分类标记的训练样本进行学习,以发现训练样本集中的结构性知识的过程,成为非监督学习。

其中,k-means为是最为经典的基于划分的无监督学习聚类方法
PS.科普一下CRF,条件随机场。

我们可以把条件随机场看成是一个无向图模型或马尔可夫随机场,

它是一种用来标记和切分序列化数据的统计模型。该模型是在给定需要标记的观察序列的条件下,计算整个标记序列的联合概率,而不是在给定当前状态条件下,定义下一个状态的分布


3.印度电影《宝莱坞机器人之恋》中的机器人七弟采用的智能算法最有可能是以下哪一种()

a.神经网络

b.遗传算法

c.模拟退火

d.穷举算法

答案:A

解析:没看过电影的笔者悲剧了,只能在豆瓣上看了一下影评,然后下了一个字幕文件,在第876句台词的时候,开发七弟的博士说“你们了解七弟的神经模式吗”。七弟在经过简单学习之后就有了完全可以通过图灵测试的能力,算是比较典型的学习型人工智能,神经网络作为一种运算模型,而其网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。遗传算法作为一种最优搜索算法,对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。


4.一监狱人脸识别准入系统用来识别待进入人员的身份,此系统一共包括识别4种不同的人员:狱警、小偷、送餐员、其他,下面哪种学习方法最适合此种应用需求?

a.二分类问题

b.多分类问题

c.层次聚类问题

d.K-中心点聚类问题

e.回归问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值