PyTorch实现数据增强(kaggle环境)

本文介绍了使用PyTorch中的torchvision库进行数据增强的方法,包括图片缩放、随机裁剪、水平和垂直翻转、旋转以及调整亮度、对比度和颜色。通过这些操作增加训练集的多样性,降低训练集准确率但提升模型的泛化能力,从而在测试集上获得更高准确率。
摘要由CSDN通过智能技术生成

一、数据增强方法:

1. 对图片进行比例缩放

2. 对图片进行随机位置的截取

3. 对图片进行随机水平和竖直翻转

4. 对图片进行随机角度的旋转

5. 对图片进行亮度、对比度和颜色随机变化

二、Torch中已经把这些方法内置在了torchvision中,可以直接调用

from PIL import Image
from torchvision import transforms as tfs
im = Image.open('../input/cat.jpg')
im

在这里插入图片描述

1. 随机比例缩放

使用:torchvision.transforms.Resize(),参数1表示缩放图片大小,可以为tuple,参数2表示缩放方法,默认为双线性插值

print('before scale, shape: {}'.format(im.size))
new_im = tfs.Resize((100,200))(im)
print('after scale, shape: {}'.format(new_im.size))
new_im
before scale, shape: (121, 121)
after scale, shape: (200, 100)

在这里插入图片描述

2.随机位置截取

使用:

(1)torchvision.transforms.RandomCrop(),参数为截取图片的大小

(2)torchvision.transforms.CenterCrop(),参数为截取图片的大小,但以原始图片的中心为中心

# 随机裁剪
random_im = tfs.RandomCrop((60, 60))
  • 6
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
PyTorch是一种流行的深度学习框架,用于构建和训练神经网络。通过使用PyTorch框架,我们可以对花的种类进行识别。为了训练我们的模型,我们可以使用Kaggle数据集中提供的图片和标签。 首先,我们需要导入PyTorch库以及其他必要的依赖项,并设置训练和测试的超参数,如批处理大小、学习率和训练时的迭代次数。 接下来,我们可以使用PyTorch的数据加载器来加载训练和测试数据集。我们可以将训练集和测试集的图像和对应的标签存储在列表或张量中。我们还可以使用数据增强技术来生成更多的训练样本,例如随机旋转、缩放和翻转图像。 然后,我们需要定义我们的神经网络模型。我们可以使用预训练的卷积神经网络(如ResNet、Inception等)作为特征提取器,然后将其与全连接层组合,最后输出类别预测。我们可以选择解冻部分或全部的卷积层,并在训练过程中进行微调。 接下来,我们可以选择适当的损失函数,如交叉熵损失函数,以及优化算法,如随机梯度下降(SGD)或Adam。我们将利用训练数据集来最小化损失函数,并根据验证集的表现进行模型选择和调整超参数。 最后,我们可以使用测试数据集来评估模型的性能。我们将计算模型在测试数据集上的预测结果,并与真实标签进行比较,以计算准确率、精确率、召回率等评估指标。 总结来说,使用PyTorch框架Kaggle数据集,我们可以构建一个用于花种类识别的神经网络模型。我们将从数据加载开始,定义模型结构和超参数,训练模型并评估其性能。这样,我们就可以使用源码进行花种类的识别。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值