本文运用相关案例和python程序,帮助大家理解概率论中概率、随机变量、概率分布、概率密度函数、中心极限定理等概念。
另外,喜欢本专栏文章的记得关注我哈~
在大学里,我们都学过概率论相关的课程。那么现在来回答一个问题,概率是什么?
要回答这个问题有一定难度,概率的概念很抽象,要解释它需要借助一些例子。
比如抛硬币问题,正面朝上的概率是1/2。
三扇门问题,重选为正确选项的概率为2/3。
概率
我们来具体实现这两个例子——
1.抛硬币问题
我们先来做一个熟悉的扔硬币的试验,我们记录下正面朝上和负面朝上的次数,分别做10次、100次、1000次、10000次。刚开始正面朝上和负面朝上的次数差别较大,随着次数的增多,二者的数量趋近相等,正面朝上的概率接近50%。当然我们不可能真的扔那么多次硬币,我们让程序来实现这个过程。
python程序:
import random
def coin_head_sum(n): #正面朝上的次数
sum = 0
for i in range(0,n): #执行n次
if random.random() > 0.5:
sum += 1
return sum
n = 10000 #n分别取10次、100次、1000次、10000次
print (coin_head_sum(n)/n)
统计表:
抛硬币的次数 | 10 | 100 | 1000 | 10000 |
---|---|---|---|---|
正面朝上的概率 | 0.4 | 0.48 | 0.502 | 0.4997 |
从统计结果中可以看出,随着抛硬币次数的增加,正面朝上的概率越来越近预期结果0.5。
2.三扇门问题
三扇门(蒙提霍尔问题)问题描述:有三扇门,其中只有一扇门是正确的选项,打开后将能获得大奖——一辆高档豪车。另外两扇门是错误选项,门内只有山羊,从门外无法获知哪一扇门才是正确选项。
挑战者需要从三扇门中选择一扇门打开,在决定选择某扇门后,还剩两个选项,其中至少有一个是错误的选项。此时,主持人打开了一个没被选中的门中错误的选项,让挑战者确认门中的山羊后,询问:“是否要重新选择?”挑战者是否应当重选,还是应该坚持最初的选择?或者两种做法没有什么区别?
答案也很简单:挑战者在第一次选择时,有1/3的概率正确,有2/3的概率不正确。那么主持人排除了一个错误选项后,是否应该重新选择呢?我们来分析一下这两种情况:
1.若第一次选择是正确选项,那么重选是错误选项
2.若第一次选择是错误选项,那么重选是正确选项
也就是说,重选是正确选项的概率与第一次选择是错误选项的概率相同,即重选是正确选项的概率是2/3,因此应该重选。我们用python来实现一下这个过程——
python程序:
import random
def three_doors():
doors = [1,2,3] #三个门分别为1、2、3 ,其中3是中奖门,其他是未中奖门,当门被选中时,会从doors序列中移除。
random.shuffle(doors) #将doors序列随机打乱
my_choice = doors[0]
if my_choice == 3: #自己开始时正好选中大奖
doors.remove(3) #自己选的从doors序列中移除
host_choice = random.choice((1,2)) #主持人从两个未中奖的门里选一个
doors.remove(host_choice) #主持人选的从doors序列中移除
else:
#my_choice = random.choice((1,2)) ##自己开始时未选中大奖.选中的是1 or 2
doors.remove(1) #随后主持人会选中剩下的那个未中奖的门
doors.remove(2)
return my_choice,doors
no_election_sum = 0 #不重选中奖的次数
re_election_sum = 0