机器学习数学基础
文章平均质量分 89
机器学习数学基础
水龙吟唱
这个作者很懒,什么都没留下…
展开
-
机器学习数学基础之统计篇——概率论(python版)
本文运用相关案例和python程序,帮助大家理解概率论中概率、随机变量、概率分布、概率密度函数、中心极限定理等概念。另外,喜欢本专栏文章的记得关注我哈~在大学里,我们都学过概率论相关的课程。那么现在来回答一个问题,概率是什么?要回答这个问题有一定难度,概率的概念很抽象,要解释它需要借助一些例子。比如抛硬币问题,正面朝上的概率是1/2。三扇门问题,重选为正确选项的概率为2/3。概率我们来具体实现这两个例子——1.抛硬币问题我们先来做一个熟悉的扔硬币的试验,我们记录下正面朝上和负面朝上的次数原创 2021-09-12 17:30:54 · 3518 阅读 · 2 评论 -
机器学习数学基础之线代篇——线性代数python手册(建议收藏)
提到线性代数,又不得不吐槽国内教材了,学起来真的是实力劝退。有多少跟着国内教材学完线性代数课程后,知道线性代数是什么,它到底是干什么的?事实上如果你后面想做科研、想研究机器学习、深度学习,你会发现处处是线性代数。这么抽象又重要的课程,一本书里基本看不到几张图,就好比是没有注释的代码,大概以为我的脑子就是记公式的机器吧…如果你还未开始学习线性代数,那么强烈建议你把学校发的紫色教材放在一边,找几本国外的线性代数教材看看。然后在B站里搜一下Gilbert Strang老爷子的线性代数视频(麻省理工公开课,80原创 2021-09-05 10:11:12 · 3367 阅读 · 12 评论 -
机器学习数学基础之高数篇——积分源起(python版)
大学的高数课本往往将积分放在微分后面,这种排序个人觉得不是很合理。不仅积分的出现要比微分早的多(早了大约1300年),而且初中、高中学过的数学知识里已经包含了积分的概念,理解积分要比理解微分要更容易的多。数学是一门注重思考的学科,我们应该将思考应用于解决实际问题,用已知的知识去推导未知的面积、体积,才是学习积分的乐趣和意义所在。而大学课程里上来就硬生生的塞给我们一堆公式,告诉我们这些地方别管这么多,就这么用的。虽说这种做法效率是挺高,但是却大大泯灭了学习数学的兴趣。吐槽就到这了,我们先来思考一下为原创 2021-09-01 07:32:15 · 716 阅读 · 4 评论 -
机器学习数学基础之高数篇——简单的泰勒公式(python版)
不少同学一提到泰勒公式,脑海里立马浮现高大上的定义和长长的公式,令人望而生畏。实际上,泰勒公式没有那么可怕,它是用简单的多项式来逼近一个光滑的函数,从而近似替代不熟悉的函数。由于泰勒公式具有将复杂函数近似成多个幂函数叠加形式的性质,可以用它进行比较、求极限、求导、解微分方程等。我们先来看一下泰勒公式的发明者,布鲁克·泰勒——布鲁克·泰勒(Brook Taylor,1685-1732),英国数学家,牛顿学派最优秀的代表人物之一,他于1712年的一封信里首次叙述了泰勒公式。再来看一下高数书上对泰勒公式原创 2021-08-30 07:21:12 · 3827 阅读 · 4 评论 -
机器学习数学基础之高数篇——函数极限和导数(python版)
不知道大家有没有类似的经历,斗志满满地翻开厚厚的机器学习,很快被一个个公式炸蒙了。想要学习机器学习算法,却很难看的懂里面的数学公式,实际应用只会调用库里的函数,无法优化算法。学好机器学习,没有数学知识是不行的。数学知识的积累是一个漫长的过程,罗马也不是一夜建成的。如果想要入门机器学习,数学基础比较薄弱,想打牢相关数学基础,可以跟关注笔者,一起学习(数学大佬也可以来扫一眼python代码)~接下来我们以高数(同济第七版)课后习题为例,使用python语言来求解函数和导数的习题。这样大家做课后练习的原创 2021-08-27 15:00:25 · 2420 阅读 · 5 评论