课程笔记——Review: Basic Structures for Deep Learning

1.Fully Connected Layer

标记方法

  • a i l a_i^l ail:第 l l l层的第 i i i个神经元,将同一层的 a i l a_i^l ail串在一起形成的向量表示为 a l a^l al
    在这里插入图片描述
  • W i j l W_{ij}^l Wijl:即l-1层和l层相连的权重,其中i表示l层连接的神经元,其中j表示l-1层连接的神经元
    在这里插入图片描述
  • z i l z_i^l zil:第 l l l层的第 i i i个神经元的激活函数的输入
    在这里插入图片描述
    在这里插入图片描述

2.Recurrent Structure(同样结构反复使用)

LSTM结构
在这里插入图片描述
GRU(Gate Recurrent Unit):与LSTM相比,该结构用的三个矩阵(LSTM用四个),参数少些 不容易过拟合

(1)将 h t − 1 h^{t-1} ht1 x t x^t xt并在一起,乘矩阵(蓝色粗箭头表示)再通过激活函数得到 r ( r e s e t − g a t e ) r(reset-gate) r(resetgate) z ( u p s e t − g a t e ) z(upset-gate) z(upsetgate)
(2)将 h t − 1 h^{t-1} ht1 r r r进行元素相乘得到新矩阵,将该矩阵和 x t x^t xt并在一起,乘矩阵(黄色粗箭头表示)再通过激活函数得到 h ′ h' h
(3)将 h t − 1 h^{t-1} ht1 z z z进行元素相乘,将 h ′ h' h 1 − z 1-z 1z进行元素相乘,再相加得到 h t h^t ht
(4) h t h^t ht乘另一个矩阵得到 y t y^t yt
在这里插入图片描述
Stack RNN
注:push即将该信息放入现在输入的最前方;pop即将最上方的值丢掉;nothing即什么都没有做
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值