综合集成学习框架及其他机器学习类型

326 篇文章 2 订阅
183 篇文章 6 订阅

A Probabilistic Framework for Ensemble Learning

 
Abstract
This paper considers the problems of learning concepts from large-scale data sets. The way we take is completely classification algorithm independent. Firstly, the original problem is decomposed into a series of smaller two-class sub-problems which are easier to be solved. Secondly we present two principles, namely the shrink and expansion principles, to restore the global solution from the intermediate results learned from the sub-problems. In the theoretical analysis, this procedure of integration is described as a statistical inference of a posterior probability and is degraded as the min-max principles in the special case considering 0-1 outputs. We also propose a revised approach which reduces the computational complexity of the training and testing stage to a linear level . Finally, experiments on both the synthetic and text-classification data are demonstrated. The results indicate that our methods are effective to large scale problems.
Publications
Learning Concepts from Large-Scale Data Sets by Pairwise Coupling with Probabilistic Outputs
F. Zhou and B. Lu
International Joint Conference on Neural Networks (IJCNN), 2007
[Paper 1M] [Slides 1M]
Research on Ensemble Learning
F. Zhou and B. Lu
Master Thesis, 2007
[Paper 2MB (in Chinese)] [Slides 3MB (in English)]

来源:  << Home


Ensemble learning algorithms:

Ensemble learningEnsemble learning techniques have been demonstrated to be an effective way to reduce the error of a base learner across a wide variety of tasks. The basic idea is to vote together the predictions of a set of classifiers that have been trained slightly differently for the same task. This work proposed a novel ensemble learning algorithm called Triskel, which  learns an ensemble of classifiers that are biased to have high precision for one particular class. Triskel outperforms boosting on a variety of real-world tasks, in terms of both accuracy and training time. It represents a middle ground between covering
algorithms and ensemble techniques such as boosting. See recent publications for more details.

来源:http://khusainr.myweb.port.ac.uk/research.html


Active Learning
Active learning differs from passive "learning from examples" in that the learning algorithm itself attempts to select the most informative data for training. Since supervised labeling of data is expensive, active learning attempts to reduce the human effort needed to learn an accurate result by selecting only the most informative examples for labeling. Our work has focused on diverse  ensembles for active learning and applications of active learning to problems in  natural-language processing and  semi-supervised learning. We have also addressed the problem of actively acquiring the most useful  features values of examples as well as supervised class labels.

Ensemble Learning
Ensemble Learning combines multiple learned models under the assumption that "two (or more) heads are better than one." The decisions of multiple hypotheses are combined in ensemble learning to produce more accurate results. Boosting and bagging are two popular approaches. Our work focuses on building diverse committees that are more effective than those built by existing methods, and, in particular, are useful for active learning.

For a general, popular book on the utility of combining diverse, independent opinions in human decision-making, see The Wisdom of Crowds.

Transfer Learning
Traditional machine learning algorithms operate under the assumption that learning for each new task starts from scratch, thus disregarding any knowledge they may have gained while learning in previous domains. Naturally, if the domains encountered during learning are related, this  tabula rasa approach would waste both data and computer time to develop hypotheses that could have been recovered by simply examining and possibly slightly modifying previously acquired knowledge. Moreover, the knowledge learned in earlier domains could capture generally valid rules that are not easily recoverable from small amounts of data, thus allowing the algorithm to achieve even higher levels of accuracy than it would if it starts from scratch.

The field of transfer learning, which has witnessed a great increase in popularity in recent years, addresses the problem of how to leverage previously acquired knowledge in order to improve the efficiency and accuracy of learning in a new domain that is in some way related to the original one. In particular, our current research is focused on developing transfer learning techniques for Markov Logic Networks (MLNs), a recently developed approach to statistical relational learning.

Our research in the area is currently sponsored by the Defense Advanced Research Projects Agency (DARPA) and managed by the Air Force Research Laboratory (AFRL) under contract FA8750-05-2-0283.


来源:http://www.cs.utexas.edu/~ai-lab/people-view.php?PID=362


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值