雅克比矩阵记录

雅克比矩阵平时经常会遇到,一直没怎么去好好理解。查询了网络大神的解答,自己做一个小小的记录。

雅克比矩阵最近遇到的场景是在微积分换元时,看到可以做一些变换。

dtds = det|\frac{\partial (t,s)}{\partial (u,v)}|dudv

其中求解雅克比矩阵行列式进行换元的方法此前也没有见到过。

在向量的微积分中,雅克比矩阵是一个一阶偏导数排列成的矩阵,其行列式是雅克比行列式。

在知乎上看到了相关的解答,解释了相关的含义。

在一维几何上,由于一维上度量dx可以反映任意自由度为1的变量的全部特征,所述一阶微分不变性。

可以想象在一个绳子上前进(一个维度),移动路程实际上只要一个变量即可确定。

\int_{0}^{\infty}f(x)dx = \int_{0}^{\infty}2f(2t)dt 

2dt其实也就是对换元函数x=2t求了一阶导数,一元矩阵的行列式也就是本身的值吧

在二维的情况下,解答说明的是一种平面之间的投影关系

当我们使用\left [ \bar{y},\bar{x} \right ] = J *\left [ y,x\right ] 的时候,两个矢量之间的变换,实际上有 det(J)就是\left [ d\bar{x},d\bar{y} \right ] 这一组微分在\left [ dx,dy \right ] 这一个平面上的投影。

额,网上作者有一个插图,我也借鉴过来,图是来自于彭家贵微分几何书籍,非数学专业不太了解。

可以看到任意一组非直线参数下的面积投影到平面正交参数上,可以写成雅克比矩阵的行列式(这里是雅克比矩阵行列式的平方开根号,[E,F;F,G]为雅克比矩阵乘以其转置);再将另一组参数也投影一次,亦可以写成这个形式;这样就间接得到这两组参数相互投影的面积比值。

——————

理论说明

微分其实就是线性化,导数其实是线性空间之间的线性变换,雅克比矩阵本质上就是导数。

哈哈,如果这么说,积分换元要求原本元对新元的雅克比矩阵行列式就说得通了。

以下是更深层次的说明,

比如,映射f:M\rightarrow N 在x处的导数 df_{x} 就是 M 在 x 处的切空间 TM_{x} 到 N 在 f(x) 处的切空间 TN_{f(x)} 之间的线性映射。

切空间都是矢量空间,都有基底,这个线性变换就是一个矩阵。

在欧式空间子空间的开集上,切空间就是某个R^{n}, 实轴上的切空间就是R,曲面上的切空间是 R^{2}

这样一来,函数f:R\rightarrow R 的导数无非是切空间 TR_{x} = R 到切空间 TR_{f(x)} = R  的线性变换,是一个1*1的雅克比矩阵,同构于一个实数。

因此雅克比矩阵实质上是切空间之间的基底之间的线性变换,因而积分中变换坐标时,会在前面乘以一个雅克比矩阵的行列式,行列式就是一个数值了,积分本身也是数值计算,而不是矢量计算吧,所以会是行列式。

———————

下面是最为常用的,雅克比计算方式

雅克比矩阵的重要在于它体现了一个可微分方程与给出点的最优线性逼近。雅克比矩阵类似于多元函数的导数。

定义

在代数几何中,代数曲线的雅克比行列式表示雅克比族:伴随该曲线的一个代数群,曲线可以嵌入其中。

假设某F:R_{n}到 R_{m}是一个从n维欧式空间映射到m维欧氏空间的函数,这个函数有m个实函数组成。

雅克比我常常见到是解决一个方程组问题时,需要求解的对象,方程组和这里说的m个实函数是一样的。

这些函数的偏导数,可以组成一个m行n列的矩阵,就是雅克比矩阵。

\begin{bmatrix} \frac{\partial y1}{\partial x1} & ... & \frac{\partial y1}{\partial xn} \\ ... & ... &...\\ \frac{\partial ym}{\partial x1} &... & \frac{\partial ym}{\partial xn} \end{bmatrix}

此矩阵用符号表示为:

J_{F} \left \{ x1,...,xn \right \} 或者 \frac{\partial (y1,..ym)}{\partial (x1,..xn)}

yi (i=1,2,...m)这个矩阵的第i行是由梯度函数的转置表示的

如果p是R^{n}中的一点,F在p点可微分,相当于高等微积分,J_{F}\left ( p \right ) 是这点的导数。在此情况下,J_{F}\left ( p \right )这个线性映射,

即是F在点P附近的最优线性逼近,也就是当x靠近p点时,有一下关系

F(x) \approx F(p) + J_{F}(p)*(x-p)

 

____________

雅克比矩阵 R^{n} \rightarrow R^{n\times m} 是一个矩阵值函数,是多元向量值函数(vector-valued multivariate funciton),多元就是n个维度的自变量,向量值函数就是映射的结果是一个向量,m维。

它是多元向量值函数f:R^{n}\rightarrow R^{m} 泰勒展开的一阶项系数。

f(x) = f(x0) + J_{f}(x0)(x-x0) + ...

一阶项 J_{f}(x0)(x-x0)中的乘法是矩阵乘法。高阶项中的乘法涉及到张量乘法,符号复杂,哈哈,看到这个解答就知道自己了解实在太浅。

可以对比,当m=1时候,f退化为多元标量值函数(scalar-valued multivaiate function) f:R^{n} \rightarrow R,这个时候雅克比矩阵退化为行向量,是梯度的转置J_{f}(x) = \bigtriangledown ^{T}f(x)

 

f(x) = f(x0) + J_{f}(x0)(x-x0) + 1/2 (x-x0)^{T} H_{f}(x0) (x-x0)+...

这时候一阶项J_{f}(x0)(x-x0)中的乘法是矩阵乘法,

二阶项1/2 (x-x0)^{T} H_{f}(x0) (x-x0)中的乘法也是矩阵乘法。

这里矩阵值函数H_{f} : R^{n}\rightarrow R^{n\times n} 被称为海森矩阵(Hessian matrix)。类似地,高阶项中的乘法涉及到张量乘法。。。

个人理解,上面两处的泰勒展开无论是多元向量值函数,还是多元标量值函数都是一样的。

——————————

摘抄自博客和知乎上的大牛

雅克比矩阵 - feifanren - 博客园 (cnblogs.com)

 

 

 

 

 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值