目录
线性代数研究有限维向量空间上的线性映射。
1.A R^n与C^n
复数(complex number):
- 一个复数是一个有序对(a,b),其中
,一般写为
,其中
- 所有复数构成的集合记为C:
- C上的加法和乘法定义为
其中
复数的算数性质:
- 交换性(commutativity),对所有
都有
;
- 结合性(associaticity),对所有
都有
;
- 单位元(identities),对所有
都有
- 加法逆元(additive inverse),对每个
都存在唯一的
使得
;
- 乘法逆元(multiplicative inverse),对每个
都存在唯一的
使得
;
- 分配性质(distributive property),对所有
都有
组(list)、长度(length):
设n是非负整数。长度为n的组是n个有顺序的元素,这些元素用逗号隔开并且两端用括弧括起来(这些元素可以是数、其他组或者更抽象的东西)。长度为n的组具有如下形式:
两个组相等当且仅当它们长度相等、所含的元素相同并且元素的顺序也相同。
F:F表示R(实数集)或C(复数集)。选用字母F是因为R和C都是域(field)的例子。
F^n:是F中元素组成的长度为n的组的集合,
对于以及
,称
是
的第
个坐标。
F^n中的加法(addition in ):
中的加法定义为对应坐标相加,
F^n的加法交换性:
若,则
。
0:用0表示长度为n且所有坐标都是0的组,
F^n中的加法逆元(additive inverse in F^n):
对于,x的加法逆元(记作-x)就是满足下面条件的向量
:
换言之,若,则
.
F^n中的标量乘法(scalar multiplication in F^n):
一个数λ与中的一个向量的乘积这样来计算,用λ乘以向量的每个坐标,即
其中
1.B 向量空间的定义
加法(addition)、标量乘法(scalar multiplication):
- 集合V上的加法是一个函数,它把每一对
都对应到
的一个元素
.
- 集合
上的标量乘法是一个函数,它把任意
和
都对应到一个元素
.
向量空间(vector space):
向量空间就是带有加法和标量乘法的集合V,满足如下性质
- 交换性(commutativity),对所有
都有
;
- 结合性(associativity),对所有
和
都有
和
;
- 加法单位元(additive identity),存在元素
使得对所有
都有
;
- 加法逆元(additive inverse),对每个
都存在
使得
;
- 乘法单位元(multiplicative identity),对所有
都有
;
- 分配性质(distributive properties),对所有
和
都有
和
.
向量(vector)、点(point):向量空间中的元素称为向量或点。
实向量空间(real vector space)、复向量空间(complex vector space):
- R上的向量空间称为实向量空间。
- C上的向量空间称为复向量空间。
记号F^S:
- 设
是一个集合,用
表示S到
的所有函数的集合。
- 对于
,规定和
是如下函数:对所有
,
.
- 对于
和
,规定乘积
是如下函数:对所有
,
.
加法单位元唯一:向量空间有唯一的加法单位元。
加法逆元唯一:向量空间中的每个元素都有唯一的加法逆元。
1.C 子空间
子空间(subspace):如果V的子集U(采用与V相同的加法和标量乘法)也是向量空间,则称U是V的子空间。
子空间的条件:V的子集U是V的子空间当且仅当U满足以下三个条件:
- 加法单位元(additive identity),
;
- 加法封闭性(closed under addition),
蕴含
;
- 标量乘法封闭性(closed under scalar multiplication),
和
蕴含
.
子集的和(sum of subsets):
设都是
的子集,则
的和定义为
中元素所有可能的和所构成的集合,记作
。更确切地说,
.
子空间的和是包含这些子空间的最小子空间:设都是
的子空间,则
是
的包含
的最小子空间。
直和(direct sum):
设都是
的子空间,
- 如果和
中的每个元素都可以唯一地表示成
,其中每个
属于
,则和
称为直和。
- 若和
是直和,则用
来表示
,这里符号
表明此处的和是一个直和。
直和的条件:
设都是
的子空间。当且仅当“每个
都等于0,是0表示成
的唯一方式”时,
是直和。
两个子空间的直和:
设和
都是
的子空间,当且仅当
时,
是直和。