【线性代数应该这样学】第1章 向量空间

本文介绍了线性代数中的基本概念,包括AR^n和C^n中的复数,以及B向量空间的定义,强调了加法、标量乘法的运算规则。文章详细讨论了子空间的定义、条件以及直和的概念,重点在于实向量空间和复向量空间的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.A R^n与C^n

1.B 向量空间的定义

1.C 子空间


线性代数研究有限维向量空间上的线性映射

1.A R^n与C^n

复数(complex number):

  • 一个复数是一个有序对(a,b),其中a,b\in R,一般写为a+bi,其中i^2=-1
  • 所有复数构成的集合记为C:C=\{a+bi:a,b\in R\}
  • C上的加法和乘法定义为

(a+bi)+(c+di)=(a+c)+(b+d)i,

(a+bi)(c+di)=(ac-bd)+(ad+bc)i,

其中a,b,c,d\in R.

复数的算数性质

  • 交换性(commutativity),对所有\alpha,\beta\in C都有\alpha+\beta=\beta+\alpha,\alpha \beta=\beta\alpha
  • 结合性(associaticity),对所有\alpha,\beta\in C都有(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda),(\alpha\beta)\lambda=\alpha(\beta\lambda)
  • 单位元(identities),对所有\lambda\in C都有\lambda +0=\lambda,\lambda1=\lambda
  • 加法逆元(additive inverse),对每个\alpha\in C都存在唯一的\beta \in C使得\alpha+\beta=0
  • 乘法逆元(multiplicative inverse),对每个\alpha\in C,\alpha \ne0都存在唯一的\beta\in C使得\alpha\beta=1
  • 分配性质(distributive property),对所有\lambda,\alpha,\beta \in C都有\lambda(\alpha+\beta)=\lambda\alpha+\lambda\beta

组(list)、长度(length)

设n是非负整数。长度为n的组是n个有顺序的元素,这些元素用逗号隔开并且两端用括弧括起来(这些元素可以是数、其他组或者更抽象的东西)。长度为n的组具有如下形式:

(x_1,...,x_n)

两个组相等当且仅当它们长度相等、所含的元素相同并且元素的顺序也相同。

F:F表示R(实数集)C(复数集)。选用字母F是因为R和C都是域(field)的例子。

F^nF^n是F中元素组成的长度为n的组的集合,

F^n=\{(x_1,...,x_n):x_j\in F,j=1,...,n\}

对于(x_1,...,x_n)\in F^n以及j\in \{1,...,n\},称x_j(x_1,...,x_n)的第j个坐标。

F^n中的加法(addition in F^n):

F^n中的加法定义为对应坐标相加,

(x_1,...,x_n)+(y_1,...,y_n)=(x_1+y_1,...,x_n+y_n)

F^n的加法交换性

x,y\in F^n,则x+y=y+x

0:用0表示长度为n且所有坐标都是0的组,0=(0,...,0).

F^n中的加法逆元(additive inverse in F^n)

对于x\in F^n,x的加法逆元(记作-x)就是满足下面条件的向量-x\in F^n

x+(-x)=0.

换言之,若x=(x_1,...,x_n),则-x=(-x_1,...,-x_n).

F^n中的标量乘法(scalar multiplication in F^n)

一个数λ与F^n中的一个向量的乘积这样来计算,用λ乘以向量的每个坐标,即

\lambda(x_1,...,x_n)=(\lambda x_1,...,\lambda x_n),

其中\lambda \in F,(x_1,...,x_n)\in F^n.

1.B 向量空间的定义

加法(addition)、标量乘法(scalar multiplication)

  • 集合V上的加法是一个函数,它把每一对u,v\in V都对应到V的一个元素u+v.
  • 集合V上的标量乘法是一个函数,它把任意\lambda\in Fv\in V都对应到一个元素\lambda v\in V.

向量空间(vector space)

向量空间就是带有加法和标量乘法的集合V,满足如下性质

  • 交换性(commutativity),对所有u,v\in V都有u+v=v+u
  • 结合性(associativity),对所有u,v,w\in Va,b\in F都有(u+v)+w=u+(v+w)(ab)v=a(bv)
  • 加法单位元(additive identity),存在元素0\in V使得对所有v\in V都有v+0=v
  • 加法逆元(additive inverse),对每个v\in V都存在w\in V使得v+w=0
  • 乘法单位元(multiplicative identity),对所有v\in V都有1v=v
  • 分配性质(distributive properties),对所有a,b\in Fu,v\in V都有a(u+v)=au+av(a+b)v=av+bv.

向量(vector)、点(point):向量空间中的元素称为向量或点。

实向量空间(real vector space)、复向量空间(complex vector space)

  • R上的向量空间称为实向量空间。
  • C上的向量空间称为复向量空间。

记号F^S

  • S是一个集合,用F^S表示S到F的所有函数的集合
  • 对于f,g\in F^S,规定f+g\in F^S是如下函数:对所有x\in S

(f+g)(x)=f(x)+g(x).

  • 对于\lambda\in Ff\in F^S,规定乘积\lambda f\in F^S是如下函数:对所有x\in S

(\lambda f)(x)=\lambda f(x).

加法单位元唯一:向量空间有唯一的加法单位元。

加法逆元唯一:向量空间中的每个元素都有唯一的加法逆元。

1.C 子空间

子空间(subspace):如果V的子集U(采用与V相同的加法和标量乘法)也是向量空间,则称U是V的子空间。

子空间的条件:V的子集U是V的子空间当且仅当U满足以下三个条件:

  1. 加法单位元(additive identity),0\in U
  2. 加法封闭性(closed under addition),u,w\in U蕴含u+w \in U
  3. 标量乘法封闭性(closed under scalar multiplication),a\in Fu\in U蕴含au\in U.

子集的和(sum of subsets)

U_1,...,U_m都是V的子集,则U_1,...,U_m的和定义为U_1,...,U_m中元素所有可能的和所构成的集合,记作U_1,...,U_m。更确切地说,

U_1,...,U_m=\{u_1+...+u_m:u_1\in U_1,...,u_m\in U_m\}.

子空间的和是包含这些子空间的最小子空间:设U_1,...,U_m都是V的子空间,则U_1,...,U_mV的包含U_1,...,U_m的最小子空间。

直和(direct sum)

U_1,...,U_m都是V的子空间,

  • 如果和U_1+...+U_m中的每个元素都可以唯一地表示成u_1+...+u_m,其中每个u_j属于U_j,则和U_1+...+U_m称为直和。
  • 若和U_1+...+U_m是直和,则用U_1\oplus...\oplus+U_m来表示U_1+...+U_m,这里符号\oplus表明此处的和是一个直和。

直和的条件

U_1,...,U_m都是V的子空间。当且仅当“每个u_j都等于0,是0表示成u_1+...+u_n的唯一方式”时,U_1+...+U_m是直和。

两个子空间的直和

UW都是V的子空间,当且仅当U\cap W=\{0\}时,U+W是直和。

### 回答1: 《线性代数应该这样(第三版)》是一本非常经典且实用的线性代数教材。习这本教材时,我们应该注意以下几个方面。 首先,我们应该充分理解线性代数的基本概念性质。线性代数是一门抽象且理论性较强的科,因此掌握基本概念是习的基础。可以通过反复阅读教材中的定义、定理例子,加深对线性空间、线性映射、特征值等概念的理解记忆。 其次,我们要注重实际问题与线性代数的联系。线性代数是应用广泛的数工具,可以用于解决各种实际问题。在习中,我们应该将抽象的理论联系到实际问题,并通过例题习题进行实际操作练习,提高应用能力。 此外,线性代数时,计算推导也是重要的环节。线性代数涉及到矩阵运算、向量计算、方程求解等内容,因此我们应该掌握相应的计算方法技巧,熟练运用矩阵变换、矩阵分解等操作。同时,推导证明也是重要的习方式,通过推导证明可以更好地理解记忆理论知识。 后,了解线性代数的发展历史应用前景有助于加深对其重要性实用性的认识。线性代数是现代数的重要分支,不仅在数本身中有广泛应用,也在物理、统计、计算机科等领域发挥着重要作用。了解这些背景知识可以激发我们对线性代数的兴趣动力。 通过以上几个方面的习,我们可以更系统地掌握线性代数的重要内容基本方法,提高自己的应用能力思维能力。《线性代数应该这样(第三版)》是一本很好的教材,通过认真实践,相信我们可以在线性代数领域取得良好的习成果。 ### 回答2: 《线性代数应该这样第三版pdf》是一本非常有价值的线性代数习资料。首先,这本书以清晰的结构简洁的表达方式介绍了线性代数的基本概念原理。逐逐节地展开,有助于读者逐步掌握线性代数的核心内容。 其次,这本书的内容既重视理论又注重实践。书中不仅提供了详细的数推导证明,还给出了大量的例题习题,帮助读者巩固所知识,并能应用于实际问题的解决。这种理论与实践相结合的习方法,使得读者更加深入地理解线性代数的概念应用。 此外,这本书还包含了大量的图示示例,使得抽象的数理论更加直观易于理解。通过图示的辅助,读者可以更清楚地理解线性代数中的向量、矩阵线性变换等概念,并将其与实际问题联系起来。 后,这本书的作者非常注重思维培养问题解决能力的发展。他们在教过程中,引导读者通过提出问题思考来加深对线性代数的理解。同时,他们还提供了一些拓展阅读研究的方向,鼓励读者深入探索线性代数的更高层次。 总而言之,《线性代数应该这样第三版pdf》是一本内容丰富、结构清晰、理论实践结合的线性代数习资料,适合初进阶习者使用。通过认真阅读练习,读者可以全面掌握线性代数的基本概念方法,并具备解决实际问题的能力。 ### 回答3: 线性代数是数中的一个重要分支,主要研究向量空间、线性变换与线性方程组等内容。第三版的《线性代数应该这样》是线性代数的经典教材,下面介绍一下如何使用该教材进行习。 首先,线性代数需要有一定的数基础,包括矩阵与向量的基本概念、初等线性变换的定义以及解线性方程组的方法等。在习过程中,可以利用教材提供的练习题进行巩固知识点,加深理解。 其次,阅读教材时应注重理解其中的定理、证明推导过程。线性代数是一门较为抽象的科,如果只是死记硬背公式定理,容易忘记混淆。通过理解其背后的原理推导过程,可以对线性代数的思想方法有更深刻的把握。 此外,实际应用计算是线性代数习的重要环节。教材中通常会有一些例题应用实例,可以通过解题计算来加深对线性代数的应用理解。同时,可以借助计算机工具如Matlab等进行线性代数相关问题的计算实验,从而加深对线性代数概念方法的理解。 后,线性代数是一门需要大量练习的科,只有通过反复的练习巩固才能真正掌握线性代数的基本原理方法。因此,阅读教材的同时,要多做习题,加强对知识的运用理解。 总之,使用第三版《线性代数应该这样》这本教材线性代数,需要注重理解定理证明,加强实际应用计算,多做习题巩固知识,并且通过练习来提高对线性代数的掌握程度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值