2.1 Vector Spaces

本文介绍了线性代数中向量空间的基本概念和性质,通过一系列例题验证了不同类型的集合是否构成向量空间,包括实数和复数上的向量、函数空间和复数的线性组合。内容涵盖加法和数乘的运算性质,以及线性组合的定义。
摘要由CSDN通过智能技术生成

本节的开头,Hoffman对线性代数这一概念有一个挺深刻的诠释:Linear algebra is that branch of mathematics which treats the common properties of algebraic systems which consists of a set, together with a reasonable notion of a ‘linear combination’ of elements in the set. 这个定义更抽象且更具有普遍性。严格的定义是:vector space含有F(scalars)、V(objects/vectors),以及加法、数乘两种运算,两种运算各需符合四种性质。
加法的四种性质:
3( a ) α + β = β + α \alpha +\beta = \beta +\alpha α+β=β+α
3( b ) α + ( β + γ ) = ( α + β ) + γ \alpha +(\beta +\gamma) =(\alpha + \beta )+\gamma α+(β+γ)=(α+β)+γ
3( c ) ∃ 0 ∈ V ,  s.t.  α + 0 = α , ∀ α ∈ V \exists 0\in V,\text{ s.t. }\alpha+0=\alpha,\forall\alpha \in V 0V, s.t. α+0=α,αV
3( d ) ∀ α ∈ V , ∃ ! − α ∈ V ,  s.t.  α + ( − α ) = 0 \forall\alpha \in V,\exists!-\alpha\in V,\text{ s.t. }\alpha+(-\alpha)=0 αV,!αV, s.t. α+(α)=0
数乘的四种性质:
4( a ) 1 α = α , ∀ α ∈ V 1\alpha=\alpha,\forall\alpha \in V 1α=α,αV
4( b ) ( c 1 c 2 ) α = c 1 ( c 2 α ) (c_1c_2)\alpha=c_1(c_2\alpha) (c1c2)α=c1(c2α)
4( c ) c ( α + β ) = c α + c β c(\alpha +\beta)=c\alpha +c\beta c(α+β)=cα+cβ
4( d ) ( c 1 + c 2 ) α = c 1 α + c 2 α (c_1+c_2)\alpha=c_1\alpha +c_2\alpha (c1+c2)α=c1α+c2α
接下来,对vector有一段解释,目的是让读者消去对“向量”这一词汇的既有印象,或者说vector也是抽象的,不仅是几何空间里的向量,也是algebraic的对象的概念。后面举了五个例子,很精彩。第一个是常见的n维向量;第二个是 m × n m\times n m×n矩阵,并提到第一个例子是第二个的特例(当 m = 1 m=1 m=1时);第三个是泛函空间,并指出第一、第二个是第三个的特例;第四个例子是多项式函数,这实际上也是第三个例子的一个子集;第五个例子是说明:复数集可以看做实数集上的一个vector space。
从定义可以得到一些很简单但是有用的结论,比如 c 0 = 0 , 0 α = 0 c0=0,0\alpha =0 c0=0,0α=0,以及 c α = 0 ⇒ ( c = 0 ) ∨ ( α = 0 ) c\alpha =0\Rightarrow(c=0)\vee(\alpha =0) cα=0(c=0)(α=0),还有 ( − 1 ) α = − α (-1)\alpha=-\alpha (1)α=α。并且加法的结合律与交换律性质使得向量在相加时不需要考虑次序。
最后就可以定义linear combination的概念。
###Exercises

1. If F F F is a field, verify that F n F^n Fn (as defined in Example 1) is a vector space over the field F F F.

Solution: Since F F F is a field, any x i , y i , z i ∈ F x_i,y_i,z_i\in F xi,yi,ziF satisfies commutativity and associativity, thus
α + β = ( x 1 + y 1 , … , x n + y n ) = ( y 1 + x 1 , … , y n + x n ) = β + α α+β=(x_1+y_1,\dots,x_n+y_n )=(y_1+x_1,\dots,y_n+x_n )=β+α α+β=(x1+y1,,xn+yn)=(y1+x1,,yn+xn)=β+α
and similarly α + ( β + γ ) = ( α + β ) + γ α+(β+γ)=(α+β)+γ α+(β+γ)=(α+β)+γ.
The zero vector in F n F^n Fn is ( 0 , … , 0 ) (0,\dots,0) (0,,0), it’s easy to see α + 0 = α α+0=α α+0=α.
For any α ∈ F n α\in F^n αF<

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值