Chapter 4 (Vector Spaces): Vector spaces and subspaces (向量空间和子空间)

Vector spaces

向量空间的定义

在这里插入图片描述

Technically, V V V is a real vector space (实数向量空间). All of the theory in this chapter also holds for a complex vector space (复数向量空间) .

  • 代数结构的角度理解 “向量空间
    • 公理 1~5 说明 < V , + > <V,+> <V,+> 为一个 Abel 群 ( + + + 为向量的加法运算)
      • One can show that the zero vector is unique, and the vector − u -\boldsymbol u u, called the negative of u \boldsymbol u u, is unique for each u \boldsymbol u u in V V V . (幺元逆元均唯一)
    • < R , ⊕ , ⊙ > <R,\oplus,\odot> <R,,> 为域 ( R R R 为实数集, ⊕ , ⊙ \oplus,\odot , 为实数集上的加法和乘法运算)
    • 公理 6 R R R V V V 之间定义标量乘法 ⋅ \cdot 公理 7~10 分别说明标量乘法 ⋅ \cdot 对向量加法 + + + 满足分配律,标量乘法 ⋅ \cdot 对域加法 ⊕ \oplus 满足分配律,标量乘法 ⋅ \cdot 一致于 (compatible) 标量的域乘法 ⊙ \odot ,标量乘法 ⋅ \cdot 幺元: 1, 这里 1 是指域 R R R 的乘法幺元

在这里插入图片描述
PROOF

  • (1). ∵ ( 0 + 0 ) u = 0 u + 0 u , ( 0 + 0 ) u = 0 u ∴ 0 u + 0 u = 0 u ∴ 0 u = 0 ( 可 约 律 ) \because (0+0)\boldsymbol u=0\boldsymbol u+0\boldsymbol u,(0+0)\boldsymbol u=0\boldsymbol u\\ \therefore 0\boldsymbol u+0\boldsymbol u=0\boldsymbol u\\\therefore 0\boldsymbol u=\boldsymbol 0(可约律) (0+0)u=0u+0u,(0+0)u=0u0u+0u=0u0u=0()
  • (2). ∵ c ( 0 + 0 ) = c 0 , c ( 0 + 0 ) = c 0 + c 0 ∴ c 0 + c 0 = c 0 ∴ c 0 = 0 ( 可 约 律 ) \because c(\boldsymbol 0+\boldsymbol 0)=c\boldsymbol 0,c(\boldsymbol 0+\boldsymbol 0)=c\boldsymbol0+c\boldsymbol 0\\ \therefore c\boldsymbol 0+c\boldsymbol 0=c\boldsymbol 0\\\therefore c\boldsymbol 0=\boldsymbol 0(可约律) c(0+0)=c0,c(0+0)=c0+c0c0+c0=c0c0=0()
  • (3). ∵ u + ( − 1 ) u = ( 1 + ( − 1 ) ) u = 0 u = 0 ∴ − u = ( − 1 ) u \because \boldsymbol u+(-1)\boldsymbol u=(1+(-1))\boldsymbol u=0\boldsymbol u=\boldsymbol0 \\\therefore -\boldsymbol u=(-1)\boldsymbol u u+(1)u=(1+(1))u=0u=0u=(1)u

常见的向量空间

R n \R^n Rn

EXAMPLE 1

  • The spaces R n \mathbb R^n Rn, where n ≥ 1 n \geq 1 n1, are the premier examples of vector spaces.

The geometric intuition developed for R 3 \mathbb R^3 R3 will help you understand and visualize many concepts throughout the chapter.

力空间

EXAMPLE 2

  • Let V V V be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction.
    • Define addition by the parallelogram rule, and for each v \boldsymbol v v in V V V, define c v c\boldsymbol v cv to be the arrow whose length is ∣ c ∣ |c| c times the length of v \boldsymbol v v, pointing in the same direction as v \boldsymbol v v if c ≥ 0 c \geq 0 c0 and otherwise pointing in the opposite direction. (See Figure 1.)
  • Show that V V V is a vector space. This space is a common model in physical problems for various forces.
    在这里插入图片描述

SOLUTION

  • The definition of V V V is geometric, using concepts of length and direction. No x y z xyz xyz-coordinate system is involved. An arrow of zero length is a single point and represents the zero vector. The negative of v \boldsymbol v v is ( − 1 ) v (-1)\boldsymbol v (1)v. So Axioms 1, 4, 5, 6, and 10 are evident. The rest are verified by geometry. For instance, see Figures 2 and 3.
    在这里插入图片描述

信号空间

EXAMPLE 3

  • Let S \mathbb S S be the space of all doubly (双向) infinite sequences of numbers:
    在这里插入图片描述If { z k } \{z_k\} {zk} is another element of S \mathbb S S, then the sum { y k } + { z k } \{y_k\}+\{z_k\} {yk}+{zk} is the sequence { y k + z k } \{y_k+z_k\} {yk+zk} formed by adding corresponding terms of { y k } \{y_k\} {yk} and { z k } \{z_k\} {zk}. The scalar multiple c { y k } c\{y_k\} c{yk} is the sequence { c y k } \{cy_k\} {cyk}. The vector space axioms are verified in the same way as for R n \mathbb R^n Rn.
  • Elements of S \mathbb S S arise in engineering, for example, whenever a signal is measured (or sampled) at discrete times. For convenience, we will call S \mathbb S S the space of (discrete-time) signals (信号空间). A signal may be visualized by a graph as in Figure 4.
    在这里插入图片描述

P n \mathbb P^n Pn

EXAMPLE 4

  • For n ≥ 0 n \geq 0 n0, the set P n \mathbb P^n Pn of polynomials of degree (多项式的次数) at most n n n consists of all polynomials of the form
    在这里插入图片描述If p ( t ) = a 0 ≠ 0 \boldsymbol p(t)= a_0 \neq 0 p(t)=a0=0, the degree of p \boldsymbol p p is zero. If all the coefficients are zero, p \boldsymbol p p is called the z e r o zero zero p o l y n o m i a l polynomial polynomial. The zero polynomial is included in P n \mathbb P^n Pn.
  • Analogous to EXAMPLE 3, P n \mathbb P^n Pn is a vecot space. The vector spaces P n \mathbb P^n Pn for various n n n are used, for instance, in statistical trend analysis of data, discussed in Section 6.8.

实值函数空间

EXAMPLE 5

  • Let V V V be the set of all real-valued functions (实值函数) defined on a set D \mathbb D D. Functions are added in the usual way: f + g \boldsymbol f + \boldsymbol g f+g is the function whose value at t t t in the domain D \mathbb D D is f ( t ) + g ( t ) \boldsymbol f(t) + \boldsymbol g(t) f(t)+g(t). Likewise, for a scalar c c c and an f \boldsymbol f f in V V V , the scalar multiple c f c\boldsymbol f cf is the function whose value at t t t is c f ( t ) c\boldsymbol f(t) cf(t). Two functions in V V V are equal if and only if their values are equal for every t t t in D \mathbb D D. Hence the zero vector in V V V is the function that is identically zero, f ( t ) = 0 \boldsymbol f(t)=0 f(t)=0 for all t t t , and the negative of f \boldsymbol f f is ( − 1 ) f (-1)\boldsymbol f (1)f. Axioms 1 and 6 are obviously true, and the other axioms follow from properties of the real numbers, so V V V is a vector space.

Subspaces

  • In many problems, a vector space consists of an appropriate subset of vectors from some larger vector space. In this case, only three of the ten vector space axioms need to be checked; the rest are automatically satisfied.

在这里插入图片描述

子空间就类似于向量空间的子代数

Some texts replace property (a) in this definition by the assumption that H H H is nonempty. Then (a) could be deduced from ( c c c) and the fact that 0 u = 0 0\boldsymbol u= \boldsymbol 0 0u=0. But the best way to test for a subspace is to look first for the zero vector. If 0 \boldsymbol 0 0 is not in H H H, then H H H cannot be a subspace and the other properties need not be checked.

  • Properties (a), (b), and ( c c c) guarantee that a subspace H H H of V V V is itself a vector space, under the vector space operations already defined in V V V.
    • To verify this, note that properties (a), (b), and ( c c c) are Axioms 1, 4, and 6. Axioms 2, 3, and 7–10 are automatically true in H H H because they apply to all elements of V V V. Axiom 5 is also true in H H H, because if u \boldsymbol u u is in H H H, then ( − 1 ) u = − u (-1)\boldsymbol u=-\boldsymbol u (1)u=u is in H H H by property ( c c c).
  • Conversely, every vector space is a subspace (of itself and possibly of other larger spaces).
  • The set consisting of only the zero vector in a vector space V V V is a subspace of V V V, called the zero subspace and written as { 0 } \{\boldsymbol 0\} {0}.

要证明某个集合是向量空间,也可以证明它是某个向量空间的子空间


EXAMPLE 8

  • The set
    在这里插入图片描述is a subset of R 3 \mathbb R^3 R3 that “looks” and “acts” like R 2 \mathbb R^2 R2, although it is logically distinct from R 2 \mathbb R^2 R2. See Figure 7.
    在这里插入图片描述

EXAMPLE 9

  • A plane in R 3 \mathbb R^3 R3 not through the origin is not a subspace of R 3 \mathbb R^3 R3, because the plane does not contain the zero vector of R 3 \mathbb R^3 R3. Similarly, a line in R 2 \mathbb R^2 R2 not through the origin, such as in Figure 8, is not a subspace of R 2 \mathbb R^2 R2.
    在这里插入图片描述

A Subspace Spanned by a Set

由一个集合生成的子空间

在这里插入图片描述

As in Chapter 1, the term linear combination refers to any sum of scalar multiples of vectors, and S p a n { v 1 , . . . , v p } Span\{\boldsymbol v_1,..., \boldsymbol v_p\} Span{v1,...,vp} denotes the set of all vectors that can be written as linear combinations of v 1 , . . . , v p \boldsymbol v_1,..., \boldsymbol v_p v1,...,vp.

  • We call S p a n { v 1 , . . . , v p } Span\{\boldsymbol v_1,..., \boldsymbol v_p\} Span{v1,...,vp} the subspace spanned (or generated) by { v 1 , . . . , v p } \{\boldsymbol v_1,..., \boldsymbol v_p\} {v1,...,vp}.
  • Given any subspace H H H of V V V , a spanning (or generating) set (生成/张成集) for H H H is a set { v 1 , . . . , v p } \{\boldsymbol v_1,..., \boldsymbol v_p\} {v1,...,vp} in H H H such that H = S p a n { v 1 , . . . , v p } H = Span\{\boldsymbol v_1,..., \boldsymbol v_p\} H=Span{v1,...,vp}.

EXAMPLE 10

  • In Section 4.5, you will see that every nonzero subspace of R 3 \mathbb R^3 R3, other than R 3 \mathbb R^3 R3 itself, is either S p a n { v 1 , v 2 } Span\{\boldsymbol v_1, \boldsymbol v_2\} Span{v1,v2} for some linearly independent v 1 \boldsymbol v_1 v1 and v 2 \boldsymbol v_2 v2 or S p a n { v } Span\{\boldsymbol v\} Span{v} for v ≠ 0 \boldsymbol v \neq \boldsymbol 0 v=0.
    • In the first case, the subspace is a plane through the origin;
    • In the second case, it is a line through the origin. (See Figure 9.)
      • It is helpful to keep these geometric pictures in mind, even for an abstract vector space.
        在这里插入图片描述

EXAMPLE 11

Let H H H be the set of all vectors of the form ( a − 3 b , b − a , a , b ) (a-3b,b-a,a,b) (a3b,ba,a,b), where a a a and b b b are arbitrary scalars. That is, let H = { ( a − 3 b , b − a , a , b ) : a   a n d   b   i n   R } H = \{(a-3b,b-a,a,b): a\ and\ b\ in\ \mathbb R\} H={(a3b,ba,a,b):a and b in R}. Show that H H H is a subspace of R 4 \mathbb R^4 R4.

SOLUTION

  • Write the vectors in H H H as column vectors. Then an arbitrary vector in H H H has the form
    在这里插入图片描述This calculation shows that H = S p a n { v 1 , v 2 } H = Span \{\boldsymbol v_1, \boldsymbol v_2\} H=Span{v1,v2}, where v 1 \boldsymbol v_1 v1 and v 2 \boldsymbol v_2 v2 are the vectors indicated above. Thus H H H is a subspace of R 4 \mathbb R^4 R4.
  • Example 11 illustrates a useful technique of expressing a subspace H H H as the set of linear combinations of some small collection of vectors. If H = S p a n { v 1 , . . . , v p } H = Span \{\boldsymbol v_1, ...,\boldsymbol v_p\} H=Span{v1,...,vp}, we can think of the vectors v 1 , . . . , v p \boldsymbol v_1, ...,\boldsymbol v_p v1,...,vp in the spanning set as “handles”(柄) that allow us to hold on to the subspace H H H. Calculations with the infinitely many vectors in H H H are often reduced to operations with the finite number of vectors in the spanning set.

References

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值