目录
Vector spaces
向量空间的定义
Technically, V V V is a real vector space (实数向量空间). All of the theory in this chapter also holds for a complex vector space (复数向量空间) .
- 从代数结构的角度理解 “向量空间”
- 公理 1~5 说明
<
V
,
+
>
<V,+>
<V,+> 为一个 Abel 群 (
+
+
+ 为向量的加法运算)
- One can show that the zero vector is unique, and the vector − u -\boldsymbol u −u, called the negative of u \boldsymbol u u, is unique for each u \boldsymbol u u in V V V . (幺元逆元均唯一)
- < R , ⊕ , ⊙ > <R,\oplus,\odot> <R,⊕,⊙> 为域 ( R R R 为实数集, ⊕ , ⊙ \oplus,\odot ⊕,⊙ 为实数集上的加法和乘法运算)
- 公理 6 在 R R R 和 V V V 之间定义标量乘法 ⋅ \cdot ⋅;公理 7~10 分别说明标量乘法 ⋅ \cdot ⋅ 对向量加法 + + + 满足分配律,标量乘法 ⋅ \cdot ⋅ 对域加法 ⊕ \oplus ⊕ 满足分配律,标量乘法 ⋅ \cdot ⋅ 一致于 (compatible) 标量的域乘法 ⊙ \odot ⊙,标量乘法 ⋅ \cdot ⋅ 有幺元: 1, 这里 1 是指域 R R R 的乘法幺元
- 公理 1~5 说明
<
V
,
+
>
<V,+>
<V,+> 为一个 Abel 群 (
+
+
+ 为向量的加法运算)
PROOF
- (1). ∵ ( 0 + 0 ) u = 0 u + 0 u , ( 0 + 0 ) u = 0 u ∴ 0 u + 0 u = 0 u ∴ 0 u = 0 ( 可 约 律 ) \because (0+0)\boldsymbol u=0\boldsymbol u+0\boldsymbol u,(0+0)\boldsymbol u=0\boldsymbol u\\ \therefore 0\boldsymbol u+0\boldsymbol u=0\boldsymbol u\\\therefore 0\boldsymbol u=\boldsymbol 0(可约律) ∵(0+0)u=0u+0u,(0+0)u=0u∴0u+0u=0u∴0u=0(可约律)
- (2). ∵ c ( 0 + 0 ) = c 0 , c ( 0 + 0 ) = c 0 + c 0 ∴ c 0 + c 0 = c 0 ∴ c 0 = 0 ( 可 约 律 ) \because c(\boldsymbol 0+\boldsymbol 0)=c\boldsymbol 0,c(\boldsymbol 0+\boldsymbol 0)=c\boldsymbol0+c\boldsymbol 0\\ \therefore c\boldsymbol 0+c\boldsymbol 0=c\boldsymbol 0\\\therefore c\boldsymbol 0=\boldsymbol 0(可约律) ∵c(0+0)=c0,c(0+0)=c0+c0∴c0+c0=c0∴c0=0(可约律)
- (3). ∵ u + ( − 1 ) u = ( 1 + ( − 1 ) ) u = 0 u = 0 ∴ − u = ( − 1 ) u \because \boldsymbol u+(-1)\boldsymbol u=(1+(-1))\boldsymbol u=0\boldsymbol u=\boldsymbol0 \\\therefore -\boldsymbol u=(-1)\boldsymbol u ∵u+(−1)u=(1+(−1))u=0u=0∴−u=(−1)u
常见的向量空间
R n \R^n Rn
EXAMPLE 1
- The spaces R n \mathbb R^n Rn, where n ≥ 1 n \geq 1 n≥1, are the premier examples of vector spaces.
The geometric intuition developed for R 3 \mathbb R^3 R3 will help you understand and visualize many concepts throughout the chapter.
力空间
EXAMPLE 2
- Let
V
V
V be the set of all arrows (directed line segments) in three-dimensional space, with two arrows regarded as equal if they have the same length and point in the same direction.
- Define addition by the parallelogram rule, and for each v \boldsymbol v v in V V V, define c v c\boldsymbol v cv to be the arrow whose length is ∣ c ∣ |c| ∣c∣ times the length of v \boldsymbol v v, pointing in the same direction as v \boldsymbol v v if c ≥ 0 c \geq 0 c≥0 and otherwise pointing in the opposite direction. (See Figure 1.)
- Show that
V
V
V is a vector space. This space is a common model in physical problems for various forces.
SOLUTION
- The definition of
V
V
V is geometric, using concepts of length and direction. No
x
y
z
xyz
xyz-coordinate system is involved. An arrow of zero length is a single point and represents the zero vector. The negative of
v
\boldsymbol v
v is
(
−
1
)
v
(-1)\boldsymbol v
(−1)v. So Axioms 1, 4, 5, 6, and 10 are evident. The rest are verified by geometry. For instance, see Figures 2 and 3.
信号空间
EXAMPLE 3
- Let
S
\mathbb S
S be the space of all doubly (双向) infinite sequences of numbers:
If { z k } \{z_k\} {zk} is another element of S \mathbb S S, then the sum { y k } + { z k } \{y_k\}+\{z_k\} {yk}+{zk} is the sequence { y k + z k } \{y_k+z_k\} {yk+zk} formed by adding corresponding terms of { y k } \{y_k\} {yk} and { z k } \{z_k\} {zk}. The scalar multiple c { y k } c\{y_k\} c{yk} is the sequence { c y k } \{cy_k\} {cyk}. The vector space axioms are verified in the same way as for R n \mathbb R^n Rn.
- Elements of
S
\mathbb S
S arise in engineering, for example, whenever a signal is measured (or sampled) at discrete times. For convenience, we will call
S
\mathbb S
S the space of (discrete-time) signals (信号空间). A signal may be visualized by a graph as in Figure 4.
P n \mathbb P^n Pn
EXAMPLE 4
- For
n
≥
0
n \geq 0
n≥0, the set
P
n
\mathbb P^n
Pn of polynomials of degree (多项式的次数) at most
n
n
n consists of all polynomials of the form
If p ( t ) = a 0 ≠ 0 \boldsymbol p(t)= a_0 \neq 0 p(t)=a0=0, the degree of p \boldsymbol p p is zero. If all the coefficients are zero, p \boldsymbol p p is called the z e r o zero zero p o l y n o m i a l polynomial polynomial. The zero polynomial is included in P n \mathbb P^n Pn.
- Analogous to EXAMPLE 3, P n \mathbb P^n Pn is a vecot space. The vector spaces P n \mathbb P^n Pn for various n n n are used, for instance, in statistical trend analysis of data, discussed in Section 6.8.
实值函数空间
EXAMPLE 5
- Let V V V be the set of all real-valued functions (实值函数) defined on a set D \mathbb D D. Functions are added in the usual way: f + g \boldsymbol f + \boldsymbol g f+g is the function whose value at t t t in the domain D \mathbb D D is f ( t ) + g ( t ) \boldsymbol f(t) + \boldsymbol g(t) f(t)+g(t). Likewise, for a scalar c c c and an f \boldsymbol f f in V V V , the scalar multiple c f c\boldsymbol f cf is the function whose value at t t t is c f ( t ) c\boldsymbol f(t) cf(t). Two functions in V V V are equal if and only if their values are equal for every t t t in D \mathbb D D. Hence the zero vector in V V V is the function that is identically zero, f ( t ) = 0 \boldsymbol f(t)=0 f(t)=0 for all t t t , and the negative of f \boldsymbol f f is ( − 1 ) f (-1)\boldsymbol f (−1)f. Axioms 1 and 6 are obviously true, and the other axioms follow from properties of the real numbers, so V V V is a vector space.
Subspaces
- In many problems, a vector space consists of an appropriate subset of vectors from some larger vector space. In this case, only three of the ten vector space axioms need to be checked; the rest are automatically satisfied.
子空间就类似于向量空间的子代数
Some texts replace property (a) in this definition by the assumption that H H H is nonempty. Then (a) could be deduced from ( c c c) and the fact that 0 u = 0 0\boldsymbol u= \boldsymbol 0 0u=0. But the best way to test for a subspace is to look first for the zero vector. If 0 \boldsymbol 0 0 is not in H H H, then H H H cannot be a subspace and the other properties need not be checked.
- Properties (a), (b), and (
c
c
c) guarantee that a subspace
H
H
H of
V
V
V is itself a vector space, under the vector space operations already defined in
V
V
V.
- To verify this, note that properties (a), (b), and ( c c c) are Axioms 1, 4, and 6. Axioms 2, 3, and 7–10 are automatically true in H H H because they apply to all elements of V V V. Axiom 5 is also true in H H H, because if u \boldsymbol u u is in H H H, then ( − 1 ) u = − u (-1)\boldsymbol u=-\boldsymbol u (−1)u=−u is in H H H by property ( c c c).
- Conversely, every vector space is a subspace (of itself and possibly of other larger spaces).
- The set consisting of only the zero vector in a vector space V V V is a subspace of V V V, called the zero subspace and written as { 0 } \{\boldsymbol 0\} {0}.
要证明某个集合是向量空间,也可以证明它是某个向量空间的子空间
EXAMPLE 8
- The set
is a subset of R 3 \mathbb R^3 R3 that “looks” and “acts” like R 2 \mathbb R^2 R2, although it is logically distinct from R 2 \mathbb R^2 R2. See Figure 7.
EXAMPLE 9
- A plane in
R
3
\mathbb R^3
R3 not through the origin is not a subspace of
R
3
\mathbb R^3
R3, because the plane does not contain the zero vector of
R
3
\mathbb R^3
R3. Similarly, a line in
R
2
\mathbb R^2
R2 not through the origin, such as in Figure 8, is not a subspace of
R
2
\mathbb R^2
R2.
A Subspace Spanned by a Set
由一个集合生成的子空间
As in Chapter 1, the term linear combination refers to any sum of scalar multiples of vectors, and S p a n { v 1 , . . . , v p } Span\{\boldsymbol v_1,..., \boldsymbol v_p\} Span{v1,...,vp} denotes the set of all vectors that can be written as linear combinations of v 1 , . . . , v p \boldsymbol v_1,..., \boldsymbol v_p v1,...,vp.
- We call S p a n { v 1 , . . . , v p } Span\{\boldsymbol v_1,..., \boldsymbol v_p\} Span{v1,...,vp} the subspace spanned (or generated) by { v 1 , . . . , v p } \{\boldsymbol v_1,..., \boldsymbol v_p\} {v1,...,vp}.
- Given any subspace H H H of V V V , a spanning (or generating) set (生成/张成集) for H H H is a set { v 1 , . . . , v p } \{\boldsymbol v_1,..., \boldsymbol v_p\} {v1,...,vp} in H H H such that H = S p a n { v 1 , . . . , v p } H = Span\{\boldsymbol v_1,..., \boldsymbol v_p\} H=Span{v1,...,vp}.
EXAMPLE 10
- In Section 4.5, you will see that every nonzero subspace of
R
3
\mathbb R^3
R3, other than
R
3
\mathbb R^3
R3 itself, is either
S
p
a
n
{
v
1
,
v
2
}
Span\{\boldsymbol v_1, \boldsymbol v_2\}
Span{v1,v2} for some linearly independent
v
1
\boldsymbol v_1
v1 and
v
2
\boldsymbol v_2
v2 or
S
p
a
n
{
v
}
Span\{\boldsymbol v\}
Span{v} for
v
≠
0
\boldsymbol v \neq \boldsymbol 0
v=0.
- In the first case, the subspace is a plane through the origin;
- In the second case, it is a line through the origin. (See Figure 9.)
- It is helpful to keep these geometric pictures in mind, even for an abstract vector space.
- It is helpful to keep these geometric pictures in mind, even for an abstract vector space.
EXAMPLE 11
Let H H H be the set of all vectors of the form ( a − 3 b , b − a , a , b ) (a-3b,b-a,a,b) (a−3b,b−a,a,b), where a a a and b b b are arbitrary scalars. That is, let H = { ( a − 3 b , b − a , a , b ) : a a n d b i n R } H = \{(a-3b,b-a,a,b): a\ and\ b\ in\ \mathbb R\} H={(a−3b,b−a,a,b):a and b in R}. Show that H H H is a subspace of R 4 \mathbb R^4 R4.
SOLUTION
- Write the vectors in
H
H
H as column vectors. Then an arbitrary vector in
H
H
H has the form
This calculation shows that H = S p a n { v 1 , v 2 } H = Span \{\boldsymbol v_1, \boldsymbol v_2\} H=Span{v1,v2}, where v 1 \boldsymbol v_1 v1 and v 2 \boldsymbol v_2 v2 are the vectors indicated above. Thus H H H is a subspace of R 4 \mathbb R^4 R4.
- Example 11 illustrates a useful technique of expressing a subspace H H H as the set of linear combinations of some small collection of vectors. If H = S p a n { v 1 , . . . , v p } H = Span \{\boldsymbol v_1, ...,\boldsymbol v_p\} H=Span{v1,...,vp}, we can think of the vectors v 1 , . . . , v p \boldsymbol v_1, ...,\boldsymbol v_p v1,...,vp in the spanning set as “handles”(柄) that allow us to hold on to the subspace H H H. Calculations with the infinitely many vectors in H H H are often reduced to operations with the finite number of vectors in the spanning set.
References
- l i n e a r linear linear a l g e b r a algebra algebra a n d and and i t s its its a p p l i c a t i o n s applications applications
- l i n e a r linear linear a l g e b r a algebra algebra d o n e done done r i g h t right right