学习笔记:矩阵微分、无约束最优化

引言    

在学习张贤达老师的《矩阵分析与应用》时,遇到了矩阵求导这一问题。之前从来没接触过这一概念,阅读资料也是花费了不少时间,因此将学习的笔记总结到这里,方便日后温习。

    图1是目录中第五章的部分内容,因为本人目前在研究无约束最优化的问题,故只选取了前三节进行学习阅读。

                                                                               图1   无约束最优化目录

梯度与无约束最优化

      极小点

       首先考虑一个最简单的优化问题。常规的优化问题中都是希望寻找一个最值,但是实际问题中很难比较全部的点,因此常常去寻找局部的极值作为某邻域取值的最小值。

                        \underset{x \in R}\min f(x)

        虽然邻域内的值虽然比全局有所减少,但是通过局部极小点f(x)\leq f(x+\Delta x)、严格局部极小点f(x)< f(x+\Delta x)来计算也是有一定的工作量。面对这种情况,采用泰勒级数展开来解决问题。

        满足f^{'}(x)=0的点x称为函数f(x)的平稳点,不能确定它是极大值or极小值or拐点,平稳点只能作为候选点,进一步确定需要依靠二阶导数。若平稳点满足f^{''}(x)=\frac{df^2(x)}{dx^2}>0,则可求出目标函数的局部最小值。相反就可求最大值。

       一阶导数被称为梯度函数。

       此外还提及凸函数、严格凸函数的定义。凸目标函数的局部极小点就是全局极小点。

       极小点、局部极小点、全局极小点的概念都可推广至向量域。

     向量梯度

 

       梯度的负方向称为变元的梯度流。

  • 以向量为变元的标量函数的梯度是一个向量。
  • 梯度的每个分量给出了标量函数在该分量方向上的变化率。

实值函数f(x)对行向量的梯度如下:

m维行向量函数对列向量x的梯度为:

列向量对行向量求导(雅克比矩阵):

f(x)=[x_{1},x_{2},\dots,x_{n}],则有:

常用的一些梯度公式法则:常数梯度为0,线性法则,乘积法则,商法则,链式法则。

实值函数的梯度矩阵

迹函数的梯度矩阵

行列式的梯度矩阵

Hessian 矩阵

 

矩阵微分

矩阵导数可以利用矩阵微分计算。矩阵微分也可以用来求标量函数的梯度矩阵,标量函数包括向量的标量函数、矩阵的标量函数(迹、行列式)。

 

共轭梯度与无约束最优化

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值