如果环境存在random,那么问题还能建模成MDP吗?

李宏毅老师的课程:https://www.youtube.com/watch?v=W8XF3ME8G2I


老师说,对于同一个observation/state(atari game的画面),也不一定会采取相同的动作,因为有些actor是stochastic的,选action有一定随机性,这一点好理解。。。

老师还说,即便actor采取同一个action,得到的reward和next state也不一定一样,因为game本身存在一些randomness。这一点我很早就注意到了,那如果game本身存在randomness,以game的画面为state,state到state的之间的转移还有马尔科夫性质吗?如果没有的话,RL这些方法的应用是不是很牵强?或者说RL只是在randomness的基础上学个平均还不错的policy。



©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页