【网络流】最大流:求最小割值、求(边)不交路径数量、求二分匹配最大匹配数

1)最大流等于最小割:

P249,定理7.13,每个流网络中,一个s-t 流的最大值等于一个s-t 割的最小容量。

即,求s-t 的最小割,可以转换为求 s-t 的最大流。


2)有向图和无向图中的 (边)不相交路径:

说一组路径边不相交,指所有路径不共享任何一条边,但是可以共享节点。

有向边不交路径问题是,在有向图G中找到边不交的 s-t 路径的最大数目;无向边不交路径问题是,在无向图G中找到边不交的 s-t 路径的最大数目。


P267,命题7.41,如果在有向图G中从 s 到 t 存在 k 条边不交的路径,那么G中的最大 s-t 流的值至少是 k。

根据命题,我们把G中的所有边的容量设为 1 ,那么很明显,G中的最大 s-t 流的值若为 f ,那么G中从 s 到 t 就会存在 f 条边不交的路径!

即,求 s-t 的边不相交路径,可以转换为求 s-t 的最大流(需要把G的边全部设为 1)。


3)二分匹配问题(在一个图G中,找一个最大规模的匹配,不一定是完美匹配):


P263,定理7.37,G中最大匹配的大小等于G‘最大流的值;并且G中这样一个匹配中的边就是G’中从X到Y的携带流的边。

即,求G的最大二分匹配数,可以转换为G的最大流(需要把G的边全部设为 1,并且加超级源点和汇点)。


一个图G,如果不具有完美匹配,直观感受是:能找到任意的一个节点集合V,V的邻居节点的集合NV含有的节点数量少于V含有的节点数量,即 | NV |<| V | 。







  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Kruskal算法是一种用来解最小生成树的贪心算法。它的基本思想是,按照边的权从小到大的顺序选择边,并且保证所选的边不会形成环,直到选取了n-1条边为止。另外,Kruskal算法还需要使用并查集来判断两个是否属于同一个连通分量。 在具体的实现过程,可以按照以下步骤进行: 1. 将图的所有边按照权从小到大排序。 2. 创建一个并查集,并初始化每个节一个独立的集合。 3. 遍历排序后的边列表,对于每一条边(u, v),判断u和v是否属于同一个连通分量。如果不属于,则将这条边加入最小生成树,并将u和v合并到同一个连通分量。 4. 重复步骤3,直到最小生成树的边达到n-1。 通过以上步骤,就可以使用Kruskal算法解出给定图的最小生成树。 参考资料: 引用:(1)度限制最小生成树和第K最短路. (poj1639) (2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和解) (poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446 (3)最优比率生成树. (poj2728) (4)最小树形图(poj3164) (5)次小生成树. (6)无向图、有向图的最小环 。 引用:http://home.ustc.edu.cn/~zhuhcheng/ACM/segment_tree.pdf 。 引用:练习复杂一,但也较常用的算法。 二分匹配(匈牙利),最小路径覆盖 网络,最小费用。 线段树. 并查集。 熟悉动态规划的各个典型:LCS、最长递增子串、三角剖分、记忆化dp 6.博弈类算法。博弈树,二进制法等。 7.最大团,最大独立集。 8.判断在多边形内。 差分约束系统. 双向广度搜索、A*算法,最小耗散优先. 第三阶段: 。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值