椭圆曲线:不定方程的难解问题


概念

Kurt Hensel提出:一次二次容易,三次四次困难,五次以及五次以上不可能(没有求解公式)。一般书籍会提及一元一次二次方程的求解,三次四次也有万能公式,但很少提。

1、不定方程定义。
在这里插入图片描述
又称为丢番图方程,勾股定理和孙子定理就是关于不定方程(组)求解的重要成果。

2、费马大定理。
在这里插入图片描述
法国终身以法律为师为业的天才业余数学家,费马在1630年左右阅读Arith-maticae的第2卷第85页的平方和问题时,用拉丁文写下的一段话(转英语这里)。
在这里插入图片描述

在这里插入图片描述
3、代数基本定理。
在这里插入图片描述
根据代数基本定理,n次复系数“代数方程”在复数范围总是有解的,但这和我们“不定方程”没有太多联系,不定方程中,我们对其整数解和有理解感兴趣。

问题

利用不定方程的一些概念,产生了许多的问题,下面提出希尔伯特H10问题。

1、希尔伯特H10问题(初级)。
在这里插入图片描述
案例:
在这里插入图片描述
Matiyasevich对H10的解释:无解,因为确定一般不定方程可解性的通用算法是不存在的。对于给定一个“任意”形式的不定方程,是没有办法告知这个方程是有解的还是没解的。

2、希尔伯特H10问题(升级)。

升级后的H10也是个“悬而未决”的难题。难点在于不定方程的解限制在整数或有理数的范围,因此解法要比一般代数方法的解法(实数和复数范围)困难很多。
在这里插入图片描述

小结

LeopoldKronecker:正整数是神创造的,其余的数才是人创造的。
以前总觉得实数、复数很难理解,但其实正整数若细看,理论非常神秘莫测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ATian+

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值