how to prove myself?

In today's society, it has become so difficult to gain trust with each other...
AS such a little thing ,repairing my mp3, has turned into a terribly troublesome matter. Since that man did not trust me,  he seemed totally deaf to my words, and insisted that i was lying and had opened the mp3 myself before. More words, more suspects.
Luckily, even without building trust between us, the problem was fixed eventually.
Without credit, our society costs much more than that of necessary.

The Cauchy principle of convergence states that a sequence converges if and only if it is a Cauchy sequence. To prove this principle, we need to show two things: 1. If a sequence converges, then it is a Cauchy sequence 2. If a sequence is a Cauchy sequence, then it converges Proof of 1: Let {an} be a convergent sequence. Then there exists a limit L such that for any ε > 0, there exists an N such that for all n > N, |an - L| < ε. Now let ε > 0 be arbitrary. We want to show that there exists an N such that for all n, m > N, |an - am| < ε. Since {an} converges to L, we can choose N1 such that for all n > N1, |an - L| < ε/2. Similarly, we can choose N2 such that for all m > N2, |am - L| < ε/2. Let N = max{N1, N2}. Then for all n, m > N, |an - am| = |an - L + L - am| ≤ |an - L| + |L - am| < ε/2 + ε/2 = ε Thus, {an} is a Cauchy sequence. Proof of 2: Let {an} be a Cauchy sequence. Then for any ε > 0, there exists an N such that for all n, m > N, |an - am| < ε. Since {an} is Cauchy, it is also bounded. Let M be an upper bound on {an}. Now consider the set {an : n ≥ N}. This set is bounded above by M and bounded below by {an - ε : n ≥ N}, since for any n ≥ N, an - ε ≤ an ≤ an + ε Therefore, by the completeness axiom of the real numbers, this set has a supremum, which we will call L. We claim that {an} converges to L. To prove this, let ε > 0 be arbitrary. Since {an} is Cauchy, there exists an N such that for all n, m > N, |an - am| < ε/2. Choose N such that N > N1 and N > N2, where N1 and N2 are the indices corresponding to ε/2 and ε/4, respectively. Then for all n > N, |an - L| ≤ |an - aN| + |aN - L| < ε/2 + ε/4 = 3ε/4 Similarly, for all m > N, |am - L| ≤ |am - aN| + |aN - L| < ε/2 + ε/4 = 3ε/4 Therefore, for all n > N, |an - L| ≤ |an - aN| + |aN - L| < ε/2 + ε/4 = 3ε/4 and for all m > N, |am - L| ≤ |am - aN| + |aN - L| < ε/2 + ε/4 = 3ε/4 Thus, for all n > N, |an - L| < 3ε/4 and for all m > N, |am - L| < 3ε/4 Therefore, for all n > N, |an - L| + |L - am| < ε/2 + ε/2 = ε which shows that {an} converges to L.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值