题目:从一串数中找到一个先递增再递减的子序列,使得上升和下降的长度相同,问最长长度。
分析:dp,最大上升子序列。
直接从双向求出,以每个点做结束标志时的最大长度;
取双向中小的那个就是这个点为中心,能够满足提议的最长序列;
找到其中的最大值即可。
说明:数据过大,要用单调队列+二分的O(NlgN)算法。
#include <iostream>
#include <cstdlib>
#include <cstdio>
#define min(x,y) ((x)<(y)?(x):(y))
#define max(x,y) ((x)>(y)?(x):(y))
using namespace std;
int D[10001];
int Q[10001];
int L[10001];
int R[10001];
int bs( int r, int a )
{
int mid = r/2,l = 0;
while ( l < r ) {
mid = l+(r-l)/2;
if ( Q[mid] < a )
l = mid+1;
else r = mid;
}
return r;
}
int main()
{
int n;
while ( scanf("%d",&n) != EOF ) {
for ( int i = 0 ; i < n ; ++ i )
scanf("%d",&D[i]);
//从左侧计算
int L_tail = -1;
for ( int i = 0 ; i < n ; ++ i ) {
if ( L_tail < 0 || Q[L_tail] < D[i] )
L[i] = ++ L_tail;
else
L[i] = bs( L_tail, D[i] );
Q[L[i]] = D[i];
}
//从右侧计算
int R_tail = -1;
for ( int i = n-1 ; i >= 0 ; -- i ) {
if ( R_tail < 0 || Q[R_tail] < D[i] )
R[i] = ++ R_tail;
else
R[i] = bs( R_tail, D[i] );
Q[R[i]] = D[i];
}
int Max = 0;
for ( int i = 0 ; i < n ; ++ i )
Max = max( Max, min(L[i],R[i]) );
printf("%d\n",Max+Max+1);
}
return 0;
}