模式识别(三)非线性分类器 3.1引言3.2 异或问题3.3 两层感知器3.4 三层感知器3.5基于训练集准确分类的算法3.6反向传播算法3.7反向传播算法改进3.8代价函数选择3.9神经网络大小的选择3.10 仿真3.11 具有权值共享的网络3.12 线性分类器的推广3.13 线性分类法中l维的空间3.14多项式分类器3.15径向基函数网络3.16通用逼近3.17概率神经网络3.18支持向量机:非线性情况3.19超越SVM的范例3.20 决策树3.21 合并分类器3.22 合并分类器的增强法3.23类的不平衡问题 3.1引言 3.2 异或问题 3.3 两层感知器 3.4 三层感知器 第一层的神经元构成超平面; 第二层的神经元构成区域; 第三层为输出层的神经元确定类; 3.5基于训练集准确分类的算法 3.6反向传播算法 3.7反向传播算法改进 3.8代价函数选择 3.9神经网络大小的选择 3.10 仿真 3.11 具有权值共享的网络 3.12 线性分类器的推广 3.13 线性分类法中l维的空间 3.14多项式分类器 3.15径向基函数网络 3.16通用逼近 3.17概率神经网络 3.18支持向量机:非线性情况 3.19超越SVM的范例 3.20 决策树 3.21 合并分类器 3.22 合并分类器的增强法 3.23类的不平衡问题