模式识别(三)非线性分类器(待续)

本文探讨了非线性分类器的各种类型和技术,包括异或问题解决方案、感知器网络、反向传播算法、神经网络设计、径向基函数网络、概率神经网络、支持向量机、决策树以及分类器融合方法,旨在为读者提供全面的非线性分类器理解。
摘要由CSDN通过智能技术生成

3.1引言

3.2 异或问题

3.3 两层感知器

3.4 三层感知器

第一层的神经元构成超平面;
第二层的神经元构成区域;
第三层为输出层的神经元确定类;

3.5基于训练集准确分类的算法

3.6反向传播算法

3.7反向传播算法改进

3.8代价函数选择

3.9神经网络大小的选择

3.10 仿真

3.11 具有权值共享的网络

3.12 线性分类器的推广

3.13 线性分类法中l维的空间

3.14多项式分类器

3.15径向基函数网络

3.16通用逼近

3.17概率神经网络

3.18支持向量机:非线性情况

3.19超越SVM的范例

3.20 决策树

3.21 合并分类器

3.22 合并分类器的增强法

3.23类的不平衡问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值