模式识别(三)非线性分类器

本文探讨了在模式识别中遇到线性不可分问题时,如何利用非线性分类器进行解决。重点介绍了多层感知器网络的工作原理,通过隐层将样本映射成线性可分空间。此外,还讨论了线性分类器的推广和线性二分法在高维空间的容量问题。最后,提到了径向基函数网络,这是一种依赖于样本距离的非线性映射方法。
摘要由CSDN通过智能技术生成

遇到像图1中所示的样本分类,线性方法是无法发挥作用的。因为塔是线性不可分的,这时候必须采用非线性方法。


1.  多层感知器网络

多层感知器包含一个以上隐层和一个输出层,隐层将输入映射到一个超立方体顶点,输出层完成线性分类。通过隐层不断映射,最终可以将样本映射为线性可分。隐层中每个神经元相当于一个超平面,超平面将样本点映射到超立方体顶点上。假设一个感知器网络由L层构成,每层有节点kr,每个节点的输入来自上一层每个节点的输出,其权重参数为wjkr,假设激活函数为f(x)。可以采用梯度下降算法计算权重参数:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值